Probing Causality Manipulation of Large Language Models
- URL: http://arxiv.org/abs/2408.14380v1
- Date: Mon, 26 Aug 2024 16:00:41 GMT
- Title: Probing Causality Manipulation of Large Language Models
- Authors: Chenyang Zhang, Haibo Tong, Bin Zhang, Dongyu Zhang,
- Abstract summary: Large language models (LLMs) have shown various ability on natural language processing, including problems about causality.
This paper proposes a novel approach to probe causality manipulation hierarchically, by providing different shortcuts to models and observe behaviors.
- Score: 12.46951388060595
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) have shown various ability on natural language processing, including problems about causality. It is not intuitive for LLMs to command causality, since pretrained models usually work on statistical associations, and do not focus on causes and effects in sentences. So that probing internal manipulation of causality is necessary for LLMs. This paper proposes a novel approach to probe causality manipulation hierarchically, by providing different shortcuts to models and observe behaviors. We exploit retrieval augmented generation (RAG) and in-context learning (ICL) for models on a designed causality classification task. We conduct experiments on mainstream LLMs, including GPT-4 and some smaller and domain-specific models. Our results suggest that LLMs can detect entities related to causality and recognize direct causal relationships. However, LLMs lack specialized cognition for causality, merely treating them as part of the global semantic of the sentence.
Related papers
- Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
We investigate the causal reasoning abilities of large language models (LLMs) through the representative problem of inferring causal relationships from narratives.
We find that even state-of-the-art language models rely on unreliable shortcuts, both in terms of the narrative presentation and their parametric knowledge.
arXiv Detail & Related papers (2024-10-31T12:48:58Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - Causality for Large Language Models [37.10970529459278]
Large language models (LLMs) with billions or trillions of parameters are trained on vast datasets, achieving unprecedented success across a series of language tasks.
Recent research highlights that LLMs function as causal parrots, capable of reciting causal knowledge without truly understanding or applying it.
This survey aims to explore how causality can enhance LLMs at every stage of their lifecycle.
arXiv Detail & Related papers (2024-10-20T07:22:23Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
This study explores the factors influencing the performance of Large Language Models (LLMs) in causal discovery tasks.
A higher frequency of causal mentions correlates with better model performance, suggesting that extensive exposure to causal information during training enhances the models' causal discovery capabilities.
arXiv Detail & Related papers (2024-07-29T01:45:05Z) - Analyzing LLM Behavior in Dialogue Summarization: Unveiling Circumstantial Hallucination Trends [38.86240794422485]
We evaluate the faithfulness of large language models for dialogue summarization.
Our evaluation reveals subtleties as to what constitutes a hallucination.
We introduce two prompt-based approaches for fine-grained error detection that outperform existing metrics.
arXiv Detail & Related papers (2024-06-05T17:49:47Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
arXiv Detail & Related papers (2024-04-09T14:40:08Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - CLadder: Assessing Causal Reasoning in Language Models [82.8719238178569]
We investigate whether large language models (LLMs) can coherently reason about causality.
We propose a new NLP task, causal inference in natural language, inspired by the "causal inference engine" postulated by Judea Pearl et al.
arXiv Detail & Related papers (2023-12-07T15:12:12Z) - Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
We test the pure causal inference skills of large language models (LLMs)
We formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables.
We show that these models achieve almost close to random performance on the task.
arXiv Detail & Related papers (2023-06-09T12:09:15Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
Large language models (LLMs) can generate causal arguments with high probability.
LLMs may be used by human domain experts to save effort in setting up a causal analysis.
arXiv Detail & Related papers (2023-04-28T19:00:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.