CHARTOM: A Visual Theory-of-Mind Benchmark for LLMs on Misleading Charts
- URL: http://arxiv.org/abs/2408.14419v3
- Date: Sun, 29 Jun 2025 00:08:15 GMT
- Title: CHARTOM: A Visual Theory-of-Mind Benchmark for LLMs on Misleading Charts
- Authors: Shubham Bharti, Shiyun Cheng, Jihyun Rho, Jianrui Zhang, Mu Cai, Yong Jae Lee, Martina Rau, Xiaojin Zhu,
- Abstract summary: We introduce CHARTOM, a visual theory-of-mind benchmark designed to evaluate multimodal large language models' capability to understand and reason about misleading data visualizations though charts.<n> CHARTOM consists of carefully designed charts and associated questions that require a language model to not only correctly comprehend the factual content in the chart (the FACT question) but also judge whether the chart will be misleading to a human readers (the MIND question)<n>We detail the construction of our benchmark including its calibration on human performance and estimation of MIND ground truth called the Human Misleadingness Index.
- Score: 26.477627174115806
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce CHARTOM, a visual theory-of-mind benchmark designed to evaluate multimodal large language models' capability to understand and reason about misleading data visualizations though charts. CHARTOM consists of carefully designed charts and associated questions that require a language model to not only correctly comprehend the factual content in the chart (the FACT question) but also judge whether the chart will be misleading to a human readers (the MIND question), a dual capability with significant societal benefits. We detail the construction of our benchmark including its calibration on human performance and estimation of MIND ground truth called the Human Misleadingness Index. We evaluated several leading LLMs -- including GPT, Claude, Gemini, Qwen, Llama, and Llava series models -- on the CHARTOM dataset and found that it was challenging to all models both on FACT and MIND questions. This highlights the limitations of current LLMs and presents significant opportunity for future LLMs to improve on understanding misleading charts.
Related papers
- Chart-to-Experience: Benchmarking Multimodal LLMs for Predicting Experiential Impact of Charts [11.029722116574604]
We introduce Chart-to-Experience, a benchmark dataset comprising 36 charts, evaluated by crowdsourced workers for their impact on seven experiential factors.<n>Using the dataset as ground truth, we evaluated capabilities of state-of-the-art MLLMs on two tasks: direct prediction and pairwise comparison of charts.<n>Our findings imply that MLLMs are not as sensitive as human evaluators when assessing individual charts, but are accurate and reliable in pairwise comparisons.
arXiv Detail & Related papers (2025-05-23T01:12:57Z) - Towards Understanding Graphical Perception in Large Multimodal Models [80.44471730672801]
We leverage the theory of graphical perception to develop an evaluation framework for analyzing gaps in LMMs' perception abilities in charts.<n>We apply our framework to evaluate and diagnose the perception capabilities of state-of-the-art LMMs at three levels (chart, visual element, and pixel)
arXiv Detail & Related papers (2025-03-13T20:13:39Z) - Chart-HQA: A Benchmark for Hypothetical Question Answering in Charts [62.45232157149698]
We introduce a novel Chart Hypothetical Question Answering (HQA) task, which imposes assumptions on the same question to compel models to engage in counterfactual reasoning based on the chart content.
Furthermore, we introduce HAI, a human-AI interactive data synthesis approach that leverages the efficient text-editing capabilities of MLLMs alongside human expert knowledge to generate diverse and high-quality HQA data at a low cost.
arXiv Detail & Related papers (2025-03-06T05:08:40Z) - Distill Visual Chart Reasoning Ability from LLMs to MLLMs [38.62832112530892]
Solving complex chart Q&A tasks requires advanced visual reasoning abilities in multimodal large language models (MLLMs)
We propose Code-as-Intermediary Translation (CIT), a cost-effective, efficient and easily scalable data synthesis method for distilling visual reasoning abilities from LLMs to MLLMs.
We employ text-based synthesizing techniques to construct chart-plotting code and produce ReachQA, a dataset containing 3k reasoning-intensive charts and 20k Q&A pairs.
arXiv Detail & Related papers (2024-10-24T14:50:42Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.<n>We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.<n>Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
This paper explores the training processes necessary to improve MLLMs' comprehension of charts.
We introduce CHOPINLLM, an MLLM tailored for in-depth chart comprehension.
arXiv Detail & Related papers (2024-07-19T17:58:36Z) - CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs [62.84082370758761]
CharXiv is a comprehensive evaluation suite involving 2,323 charts from arXiv papers.
To ensure quality, all charts and questions are handpicked, curated, and verified by human experts.
Results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model.
arXiv Detail & Related papers (2024-06-26T17:50:11Z) - Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning? An Extensive Investigation into the Capabilities and Limitations of LVLMs [11.19928977117624]
Natural language is a powerful complementary modality of communication for data visualizations, such as bar and line charts.
Various downstream tasks have been introduced recently such as chart question answering, chart summarization, and fact-checking with charts.
These tasks pose a unique challenge, demanding both vision-language reasoning and a nuanced understanding of chart data tables, visual encodings, and natural language prompts.
This paper presents the first comprehensive evaluation of the recently developed large vision language models (LVLMs) for chart understanding and reasoning tasks.
arXiv Detail & Related papers (2024-06-01T01:43:30Z) - AltChart: Enhancing VLM-based Chart Summarization Through Multi-Pretext Tasks [31.414783623207477]
We introduce the AltChart dataset, comprising 10,000 real chart images, each paired with a comprehensive summary.
We propose a new method for pretraining Vision-Language Models (VLMs) to learn fine-grained chart representations.
We conduct extensive evaluations of four leading chart summarization models, analyzing how accessible their descriptions are.
arXiv Detail & Related papers (2024-05-22T12:18:52Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
We present TinyChart, an efficient MLLM for chart understanding with only 3B parameters.
TinyChart overcomes two key challenges in efficient chart understanding: (1) reduce the burden of learning numerical computations through a Program-of-Thoughts (PoT) learning strategy, and (2) reduce lengthy vision feature sequences produced by the vision transformer for high-resolution images through a Vision Token Merging module.
arXiv Detail & Related papers (2024-04-25T14:23:24Z) - ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning [54.82612435284695]
We benchmark the ability of off-the-shelf Multi-modal Large Language Models (MLLMs) in the chart domain.
We construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data.
We develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns.
arXiv Detail & Related papers (2024-02-19T14:48:23Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistant is a vision-language model for universal chart comprehension and reasoning.
It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text.
Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and Chartllama method.
arXiv Detail & Related papers (2024-01-04T17:51:48Z) - Enhanced Chart Understanding in Vision and Language Task via Cross-modal
Pre-training on Plot Table Pairs [71.55796212450055]
We introduce ChartT5, a V+L model that learns how to interpret table information from chart images via cross-modal pre-training on plot table pairs.
Specifically, we propose two novel pre-training objectives: Masked Header Prediction (MHP) and Masked Value Prediction (MVP)
arXiv Detail & Related papers (2023-05-29T22:29:03Z) - Chart-to-Text: A Large-Scale Benchmark for Chart Summarization [9.647079534077472]
We present Chart-to-text, a large-scale benchmark with two datasets and a total of 44,096 charts.
We explain the dataset construction process and analyze the datasets.
arXiv Detail & Related papers (2022-03-12T17:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.