Few-Shot 3D Volumetric Segmentation with Multi-Surrogate Fusion
- URL: http://arxiv.org/abs/2408.14427v1
- Date: Mon, 26 Aug 2024 17:15:37 GMT
- Title: Few-Shot 3D Volumetric Segmentation with Multi-Surrogate Fusion
- Authors: Meng Zheng, Benjamin Planche, Zhongpai Gao, Terrence Chen, Richard J. Radke, Ziyan Wu,
- Abstract summary: We present MSFSeg, a novel few-shot 3D segmentation framework with a lightweight multi-surrogate fusion (MSF)
MSFSeg is able to automatically segment unseen 3D objects/organs (during training) provided with one or a few annotated 2D slices or 3D sequence segments.
Our proposed MSF module mines comprehensive and diversified correlations between unlabeled and the few labeled slices/sequences through multiple designated surrogates.
- Score: 31.736235596070937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional 3D medical image segmentation methods typically require learning heavy 3D networks (e.g., 3D-UNet), as well as large amounts of in-domain data with accurate pixel/voxel-level labels to avoid overfitting. These solutions are thus extremely time- and labor-expensive, but also may easily fail to generalize to unseen objects during training. To alleviate this issue, we present MSFSeg, a novel few-shot 3D segmentation framework with a lightweight multi-surrogate fusion (MSF). MSFSeg is able to automatically segment unseen 3D objects/organs (during training) provided with one or a few annotated 2D slices or 3D sequence segments, via learning dense query-support organ/lesion anatomy correlations across patient populations. Our proposed MSF module mines comprehensive and diversified morphology correlations between unlabeled and the few labeled slices/sequences through multiple designated surrogates, making it able to generate accurate cross-domain 3D segmentation masks given annotated slices or sequences. We demonstrate the effectiveness of our proposed framework by showing superior performance on conventional few-shot segmentation benchmarks compared to prior art, and remarkable cross-domain cross-volume segmentation performance on proprietary 3D segmentation datasets for challenging entities, i.e., tubular structures, with only limited 2D or 3D labels.
Related papers
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - Augmented Efficiency: Reducing Memory Footprint and Accelerating Inference for 3D Semantic Segmentation through Hybrid Vision [9.96433151449016]
This paper introduces a novel approach to 3D semantic segmentation, distinguished by incorporating a hybrid blend of 2D and 3D computer vision techniques.
We conduct 2D semantic segmentation on RGB images linked to 3D point clouds and extend the results to 3D using an extrusion technique for specific class labels.
This model serves as the current state-of-the-art 3D semantic segmentation model on the KITTI-360 dataset.
arXiv Detail & Related papers (2024-07-23T00:04:10Z) - Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
We propose a novel 3D brain segmentation approach using complementary 2D diffusion models.
Our goal is to achieve reliable segmentation quality without requiring complete labels for each individual subject.
arXiv Detail & Related papers (2024-07-17T06:14:53Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene.
Our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output.
We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency.
arXiv Detail & Related papers (2024-05-30T04:14:58Z) - Segment Any 3D Object with Language [58.471327490684295]
We introduce Segment any 3D Object with LanguagE (SOLE), a semantic geometric and-aware visual-language learning framework with strong generalizability.
Specifically, we propose a multimodal fusion network to incorporate multimodal semantics in both backbone and decoder.
Our SOLE outperforms previous methods by a large margin on ScanNetv2, ScanNet200, and Replica benchmarks.
arXiv Detail & Related papers (2024-04-02T17:59:10Z) - Segment3D: Learning Fine-Grained Class-Agnostic 3D Segmentation without
Manual Labels [141.23836433191624]
Current 3D scene segmentation methods are heavily dependent on manually annotated 3D training datasets.
We propose Segment3D, a method for class-agnostic 3D scene segmentation that produces high-quality 3D segmentation masks.
arXiv Detail & Related papers (2023-12-28T18:57:11Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
We introduce SAI3D, a novel zero-shot 3D instance segmentation approach.
Our method partitions a 3D scene into geometric primitives, which are then progressively merged into 3D instance segmentations.
Empirical evaluations on ScanNet, Matterport3D and the more challenging ScanNet++ datasets demonstrate the superiority of our approach.
arXiv Detail & Related papers (2023-12-17T09:05:47Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
This paper introduces a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations.
We leverage the strong semantic prior within a 3D generative model to train a semantic decoder.
Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data.
arXiv Detail & Related papers (2023-11-18T21:58:28Z) - CORPS: Cost-free Rigorous Pseudo-labeling based on Similarity-ranking
for Brain MRI Segmentation [3.1657395760137406]
We propose a semi-supervised segmentation framework built upon a novel atlas-based pseudo-labeling method and a 3D deep convolutional neural network (DCNN) for 3D brain MRI segmentation.
The experimental results demonstrate the superiority of the proposed framework over the baseline method both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-05-19T14:42:49Z) - Semi-supervised 3D shape segmentation with multilevel consistency and
part substitution [21.075426681857024]
We propose an effective semi-supervised method for learning 3D segmentations from a few labeled 3D shapes and a large amount of unlabeled 3D data.
For the unlabeled data, we present a novel multilevel consistency loss to enforce consistency of network predictions between perturbed copies of a 3D shape.
For the labeled data, we develop a simple yet effective part substitution scheme to augment the labeled 3D shapes with more structural variations to enhance training.
arXiv Detail & Related papers (2022-04-19T11:48:24Z) - Learning Hyperbolic Representations for Unsupervised 3D Segmentation [3.516233423854171]
We propose learning effective representations of 3D patches for unsupervised segmentation through a variational autoencoder (VAE) with a hyperbolic latent space and a proposed gyroplane convolutional layer.
We demonstrate the effectiveness of our hyperbolic representations for unsupervised 3D segmentation on a hierarchical toy dataset, BraTS whole tumor dataset, and cryogenic electron microscopy data.
arXiv Detail & Related papers (2020-12-03T02:15:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.