Learning Hyperbolic Representations for Unsupervised 3D Segmentation
- URL: http://arxiv.org/abs/2012.01644v2
- Date: Fri, 4 Dec 2020 23:28:46 GMT
- Title: Learning Hyperbolic Representations for Unsupervised 3D Segmentation
- Authors: Joy Hsu, Jeffrey Gu, Gong-Her Wu, Wah Chiu, Serena Yeung
- Abstract summary: We propose learning effective representations of 3D patches for unsupervised segmentation through a variational autoencoder (VAE) with a hyperbolic latent space and a proposed gyroplane convolutional layer.
We demonstrate the effectiveness of our hyperbolic representations for unsupervised 3D segmentation on a hierarchical toy dataset, BraTS whole tumor dataset, and cryogenic electron microscopy data.
- Score: 3.516233423854171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There exists a need for unsupervised 3D segmentation on complex volumetric
data, particularly when annotation ability is limited or discovery of new
categories is desired. Using the observation that much of 3D volumetric data is
innately hierarchical, we propose learning effective representations of 3D
patches for unsupervised segmentation through a variational autoencoder (VAE)
with a hyperbolic latent space and a proposed gyroplane convolutional layer,
which better models the underlying hierarchical structure within a 3D image. We
also introduce a hierarchical triplet loss and multi-scale patch sampling
scheme to embed relationships across varying levels of granularity. We
demonstrate the effectiveness of our hyperbolic representations for
unsupervised 3D segmentation on a hierarchical toy dataset, BraTS whole tumor
dataset, and cryogenic electron microscopy data.
Related papers
- Few-Shot 3D Volumetric Segmentation with Multi-Surrogate Fusion [31.736235596070937]
We present MSFSeg, a novel few-shot 3D segmentation framework with a lightweight multi-surrogate fusion (MSF)
MSFSeg is able to automatically segment unseen 3D objects/organs (during training) provided with one or a few annotated 2D slices or 3D sequence segments.
Our proposed MSF module mines comprehensive and diversified correlations between unlabeled and the few labeled slices/sequences through multiple designated surrogates.
arXiv Detail & Related papers (2024-08-26T17:15:37Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene.
Our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output.
We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency.
arXiv Detail & Related papers (2024-05-30T04:14:58Z) - OmniSeg3D: Omniversal 3D Segmentation via Hierarchical Contrastive
Learning [31.234212614311424]
We propose OmniSeg3D, an omniversal segmentation method for segmenting anything in 3D all at once.
In tackling the challenges posed by inconsistent 2D segmentations, this framework yields a global consistent 3D feature field.
Experiments demonstrate the effectiveness of our method on high-quality 3D segmentation and accurate hierarchical structure understanding.
arXiv Detail & Related papers (2023-11-20T11:04:59Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
This paper introduces a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations.
We leverage the strong semantic prior within a 3D generative model to train a semantic decoder.
Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data.
arXiv Detail & Related papers (2023-11-18T21:58:28Z) - Unsupervised Discovery of 3D Hierarchical Structure with Generative
Diffusion Features [22.657405088126012]
We show that features of diffusion models capture different hierarchy levels in 3D biomedical images.
We train a predictive unsupervised segmentation network that encourages the decomposition of 3D volumes into meaningful nested subvolumes.
Our models achieve better performance than prior unsupervised structure discovery approaches on challenging synthetic datasets and on a real-world brain tumor MRI dataset.
arXiv Detail & Related papers (2023-04-28T19:37:17Z) - Semi-supervised 3D shape segmentation with multilevel consistency and
part substitution [21.075426681857024]
We propose an effective semi-supervised method for learning 3D segmentations from a few labeled 3D shapes and a large amount of unlabeled 3D data.
For the unlabeled data, we present a novel multilevel consistency loss to enforce consistency of network predictions between perturbed copies of a 3D shape.
For the labeled data, we develop a simple yet effective part substitution scheme to augment the labeled 3D shapes with more structural variations to enhance training.
arXiv Detail & Related papers (2022-04-19T11:48:24Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - Fine-Grained 3D Shape Classification with Hierarchical Part-View
Attentions [70.0171362989609]
We propose a novel fine-grained 3D shape classification method named FG3D-Net to capture the fine-grained local details of 3D shapes from multiple rendered views.
Our results under the fine-grained 3D shape dataset show that our method outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-05-26T06:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.