Reconstruction-based Multi-Normal Prototypes Learning for Weakly Supervised Anomaly Detection
- URL: http://arxiv.org/abs/2408.14498v1
- Date: Fri, 23 Aug 2024 18:27:58 GMT
- Title: Reconstruction-based Multi-Normal Prototypes Learning for Weakly Supervised Anomaly Detection
- Authors: Zhijin Dong, Hongzhi Liu, Boyuan Ren, Weimin Xiong, Zhonghai Wu,
- Abstract summary: Anomaly detection is a crucial task in various domains.
Most of the existing methods assume the normal sample data clusters around a single central prototype.
We propose a reconstruction-based multi-normal prototypes learning framework.
- Score: 9.4765288592895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is a crucial task in various domains. Most of the existing methods assume the normal sample data clusters around a single central prototype while the real data may consist of multiple categories or subgroups. In addition, existing methods always assume all unlabeled data are normal while they inevitably contain some anomalous samples. To address these issues, we propose a reconstruction-based multi-normal prototypes learning framework that leverages limited labeled anomalies in conjunction with abundant unlabeled data for anomaly detection. Specifically, we assume the normal sample data may satisfy multi-modal distribution, and utilize deep embedding clustering and contrastive learning to learn multiple normal prototypes to represent it. Additionally, we estimate the likelihood of each unlabeled sample being normal based on the multi-normal prototypes, guiding the training process to mitigate the impact of contaminated anomalies in the unlabeled data. Extensive experiments on various datasets demonstrate the superior performance of our method compared to state-of-the-art techniques.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD) aims to train one single detection model that can generalize to detect anomalies in diverse datasets from different application domains without further training on the target data.
We introduce a novel approach that learns an in-context residual learning model for GAD, termed InCTRL.
InCTRL is the best performer and significantly outperforms state-of-the-art competing methods.
arXiv Detail & Related papers (2024-03-11T08:07:46Z) - Active anomaly detection based on deep one-class classification [9.904380236739398]
We tackle two essential problems of active learning for Deep SVDD: query strategy and semi-supervised learning method.
First, rather than solely identifying anomalies, our query strategy selects uncertain samples according to an adaptive boundary.
Second, we apply noise contrastive estimation in training a one-class classification model to incorporate both labeled normal and abnormal data effectively.
arXiv Detail & Related papers (2023-09-18T03:56:45Z) - A Generic Machine Learning Framework for Fully-Unsupervised Anomaly
Detection with Contaminated Data [0.0]
We introduce a framework for a fully unsupervised refinement of contaminated training data for AD tasks.
The framework is generic and can be applied to any residual-based machine learning model.
We show its clear superiority over the naive approach of training with contaminated data without refinement.
arXiv Detail & Related papers (2023-08-25T12:47:59Z) - Few-shot Deep Representation Learning based on Information Bottleneck
Principle [0.0]
In a standard anomaly detection problem, a detection model is trained in an unsupervised setting, under an assumption that the samples were generated from a single source of normal data.
In practice, normal data often consist of multiple classes. In such settings, learning to differentiate between normal instances and anomalies among discrepancies between normal classes without large-scale labeled data presents a significant challenge.
In this work, we attempt to overcome this challenge by preparing few examples from each normal class, which is not excessively costly.
arXiv Detail & Related papers (2021-11-25T07:15:12Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.