A Survey on Reinforcement Learning Applications in SLAM
- URL: http://arxiv.org/abs/2408.14518v1
- Date: Mon, 26 Aug 2024 00:13:14 GMT
- Title: A Survey on Reinforcement Learning Applications in SLAM
- Authors: Mohammad Dehghani Tezerjani, Mohammad Khoshnazar, Mohammadhamed Tangestanizadeh, Qing Yang,
- Abstract summary: This study explores the application of reinforcement learning in the context of SLAM.
By enabling the agent (the robot) to iteratively interact with and receive feedback from its environment, reinforcement learning facilitates the acquisition of navigation and mapping skills.
The findings of this study, which provide an overview of reinforcement learning's utilization in SLAM, reveal significant advancements in the field.
- Score: 1.1682807230625691
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The emergence of mobile robotics, particularly in the automotive industry, introduces a promising era of enriched user experiences and adept handling of complex navigation challenges. The realization of these advancements necessitates a focused technological effort and the successful execution of numerous intricate tasks, particularly in the critical domain of Simultaneous Localization and Mapping (SLAM). Various artificial intelligence (AI) methodologies, such as deep learning and reinforcement learning, present viable solutions to address the challenges in SLAM. This study specifically explores the application of reinforcement learning in the context of SLAM. By enabling the agent (the robot) to iteratively interact with and receive feedback from its environment, reinforcement learning facilitates the acquisition of navigation and mapping skills, thereby enhancing the robot's decision-making capabilities. This approach offers several advantages, including improved navigation proficiency, increased resilience, reduced dependence on sensor precision, and refinement of the decision-making process. The findings of this study, which provide an overview of reinforcement learning's utilization in SLAM, reveal significant advancements in the field. The investigation also highlights the evolution and innovative integration of these techniques.
Related papers
- Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Comprehensive Overview of Reward Engineering and Shaping in Advancing Reinforcement Learning Applications [0.0]
This paper emphasizes the importance of reward engineering and reward shaping in enhancing the efficiency and effectiveness of reinforcement learning algorithms.
Despite significant advancements in reinforcement learning, several limitations persist.
One key challenge is the sparse and delayed nature of rewards in many real-world scenarios.
The complexity of accurately modeling real-world environments and the computational demands of reinforcement learning algorithms remain substantial obstacles.
arXiv Detail & Related papers (2024-07-22T09:28:12Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
This paper proposes a novel approach, Weak Exploration to Strong Exploitation (WESE) to enhance LLM agents in solving open-world interactive tasks.
WESE involves decoupling the exploration and exploitation process, employing a cost-effective weak agent to perform exploration tasks for global knowledge.
A knowledge graph-based strategy is then introduced to store the acquired knowledge and extract task-relevant knowledge, enhancing the stronger agent in success rate and efficiency for the exploitation task.
arXiv Detail & Related papers (2024-04-11T03:31:54Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
We introduce an intelligent system (CL-XAI) for Cognitive Learning which is supported by artificial intelligence (AI) tools.
The use of CL-XAI is illustrated with a game-inspired virtual use case where learners tackle problems to enhance problem-solving skills.
arXiv Detail & Related papers (2023-12-19T16:13:47Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
We present a learning mechanism for reinforcement learning of closely related skills parameterized via a skill embedding space.
The main contribution of our work is to formulate an adversarial training regime for reinforcement learning with the help of entropy-regularized policy gradient formulation.
arXiv Detail & Related papers (2022-01-27T19:51:09Z) - Opportunities for Machine Learning to Accelerate Halide Perovskite
Commercialization and Scale-Up [5.5532399751725]
We review practical challenges hindering the commercialization of halide perovskites.
We discuss how machine-learning (ML) tools could help.
We propose how industry-academic partnerships could help adapt "ready-now" ML tools to specific industry needs.
arXiv Detail & Related papers (2021-10-08T06:35:46Z) - KnowRU: Knowledge Reusing via Knowledge Distillation in Multi-agent
Reinforcement Learning [16.167201058368303]
Deep Reinforcement Learning (RL) algorithms have achieved dramatically progress in the multi-agent area.
To alleviate this problem, efficient leveraging of the historical experience is essential.
We propose a method, named "KnowRU" for knowledge reusing.
arXiv Detail & Related papers (2021-03-27T12:38:01Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z) - Knowledge-guided Deep Reinforcement Learning for Interactive
Recommendation [49.32287384774351]
Interactive recommendation aims to learn from dynamic interactions between items and users to achieve responsiveness and accuracy.
We propose Knowledge-Guided deep Reinforcement learning to harness the advantages of both reinforcement learning and knowledge graphs for interactive recommendation.
arXiv Detail & Related papers (2020-04-17T05:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.