Comprehensive Overview of Reward Engineering and Shaping in Advancing Reinforcement Learning Applications
- URL: http://arxiv.org/abs/2408.10215v1
- Date: Mon, 22 Jul 2024 09:28:12 GMT
- Title: Comprehensive Overview of Reward Engineering and Shaping in Advancing Reinforcement Learning Applications
- Authors: Sinan Ibrahim, Mostafa Mostafa, Ali Jnadi, Pavel Osinenko,
- Abstract summary: This paper emphasizes the importance of reward engineering and reward shaping in enhancing the efficiency and effectiveness of reinforcement learning algorithms.
Despite significant advancements in reinforcement learning, several limitations persist.
One key challenge is the sparse and delayed nature of rewards in many real-world scenarios.
The complexity of accurately modeling real-world environments and the computational demands of reinforcement learning algorithms remain substantial obstacles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of Reinforcement Learning (RL) in real-world applications is to create systems capable of making autonomous decisions by learning from their environment through trial and error. This paper emphasizes the importance of reward engineering and reward shaping in enhancing the efficiency and effectiveness of reinforcement learning algorithms. Reward engineering involves designing reward functions that accurately reflect the desired outcomes, while reward shaping provides additional feedback to guide the learning process, accelerating convergence to optimal policies. Despite significant advancements in reinforcement learning, several limitations persist. One key challenge is the sparse and delayed nature of rewards in many real-world scenarios, which can hinder learning progress. Additionally, the complexity of accurately modeling real-world environments and the computational demands of reinforcement learning algorithms remain substantial obstacles. On the other hand, recent advancements in deep learning and neural networks have significantly improved the capability of reinforcement learning systems to handle high-dimensional state and action spaces, enabling their application to complex tasks such as robotics, autonomous driving, and game playing. This paper provides a comprehensive review of the current state of reinforcement learning, focusing on the methodologies and techniques used in reward engineering and reward shaping. It critically analyzes the limitations and recent advancements in the field, offering insights into future research directions and potential applications in various domains.
Related papers
- A Survey on Reinforcement Learning Applications in SLAM [1.1682807230625691]
This study explores the application of reinforcement learning in the context of SLAM.
By enabling the agent (the robot) to iteratively interact with and receive feedback from its environment, reinforcement learning facilitates the acquisition of navigation and mapping skills.
The findings of this study, which provide an overview of reinforcement learning's utilization in SLAM, reveal significant advancements in the field.
arXiv Detail & Related papers (2024-08-26T00:13:14Z) - Research on the Application of Computer Vision Based on Deep Learning in Autonomous Driving Technology [9.52658065214428]
This article analyzes in detail the application of deep learning in image recognition, real-time target tracking and classification, environment perception and decision support, and path planning and navigation.
The proposed system has an accuracy of over 98% in image recognition, target tracking and classification, and also demonstrates efficient performance and practicality.
arXiv Detail & Related papers (2024-06-01T16:41:24Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
Deep learning models have reached or even exceeded human-level performance in a range of visual perception tasks.
Deep learning models usually demand significant computational resources, leading to impractical power consumption, latency, or carbon emissions in real-world scenarios.
New research focus is computationally efficient deep learning, which strives to achieve satisfactory performance while minimizing the computational cost during inference.
arXiv Detail & Related papers (2023-08-27T03:55:28Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
We show that it is possible to train agents in complex real-world environments orders of magnitudes faster.
By enabling the application of reinforcement learning methods to new domains, we show that we can find interesting and non-trivial solutions.
arXiv Detail & Related papers (2022-11-23T19:17:20Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Emergent Real-World Robotic Skills via Unsupervised Off-Policy
Reinforcement Learning [81.12201426668894]
We develop efficient reinforcement learning methods that acquire diverse skills without any reward function, and then repurpose these skills for downstream tasks.
We show that our proposed algorithm provides substantial improvement in learning efficiency, making reward-free real-world training feasible.
We also demonstrate that the learned skills can be composed using model predictive control for goal-oriented navigation, without any additional training.
arXiv Detail & Related papers (2020-04-27T17:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.