A Multilateral Attention-enhanced Deep Neural Network for Disease Outbreak Forecasting: A Case Study on COVID-19
- URL: http://arxiv.org/abs/2408.14519v1
- Date: Mon, 26 Aug 2024 06:31:53 GMT
- Title: A Multilateral Attention-enhanced Deep Neural Network for Disease Outbreak Forecasting: A Case Study on COVID-19
- Authors: Ashutosh Anshul, Jhalak Gupta, Mohammad Zia Ur Rehman, Nagendra Kumar,
- Abstract summary: We propose a novel approach to address the challenges of infectious disease forecasting.
We introduce a Multilateral Attention-enhanced GRU model that leverages information from multiple sources.
By incorporating attention mechanisms within a GRU framework, our model can effectively capture complex relationships and temporal dependencies in the data.
- Score: 0.6874745415692134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The worldwide impact of the recent COVID-19 pandemic has been substantial, necessitating the development of accurate forecasting models to predict the spread and course of a pandemic. Previous methods for outbreak forecasting have faced limitations by not utilizing multiple sources of input and yielding suboptimal performance due to the limited availability of data. In this study, we propose a novel approach to address the challenges of infectious disease forecasting. We introduce a Multilateral Attention-enhanced GRU model that leverages information from multiple sources, thus enabling a comprehensive analysis of factors influencing the spread of a pandemic. By incorporating attention mechanisms within a GRU framework, our model can effectively capture complex relationships and temporal dependencies in the data, leading to improved forecasting performance. Further, we have curated a well-structured multi-source dataset for the recent COVID-19 pandemic that the research community can utilize as a great resource to conduct experiments and analysis on time-series forecasting. We evaluated the proposed model on our COVID-19 dataset and reported the output in terms of RMSE and MAE. The experimental results provide evidence that our proposed model surpasses existing techniques in terms of performance. We also performed performance gain and qualitative analysis on our dataset to evaluate the impact of the attention mechanism and show that the proposed model closely follows the trajectory of the pandemic.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
We propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting.
Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters.
arXiv Detail & Related papers (2023-06-26T17:09:43Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
This paper studies the distribution shift problem from the perspective of pre-training and data augmentation.
We provide the first comprehensive empirical study focusing on pre-training and data augmentation.
arXiv Detail & Related papers (2022-05-25T13:04:53Z) - Predicting infections in the Covid-19 pandemic -- lessons learned [5.981641988736108]
In this paper, we start from prediction algorithms proposed for XPrize Pandemic Response Challenge and consider several directions that might allow their improvement.
We find that augmenting the algorithms with additional information about the culture of the modeled region can improve the performance for short term predictions.
The accuracy of medium-term predictions is still very low and a significant amount of future research is needed to make such models a reliable component of a public policy toolbox.
arXiv Detail & Related papers (2021-12-02T20:20:46Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Examining Deep Learning Models with Multiple Data Sources for COVID-19
Forecasting [10.052302234274256]
We design and analysis of deep learning-based models for COVID-19 forecasting.
We consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions.
We propose clustering-based training for high-temporal forecasting.
arXiv Detail & Related papers (2020-10-27T17:52:02Z) - Statistical Analytics and Regional Representation Learning for COVID-19
Pandemic Understanding [4.731074162093199]
The rapid spread of the novel coronavirus (COVID-19) has severely impacted almost all countries around the world.
This paper combines and processes an extensive collection of publicly available datasets to provide a unified information source.
A specific RNN-based inference pipeline called DoubleWindowLSTM-CP is proposed in this work for predictive event modeling.
arXiv Detail & Related papers (2020-08-08T03:35:16Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
We propose a deep learning model to forecast the range of increase in COVID-19 infected cases in future days.
Using data collected from various sources, we estimate the range of increase in infected cases seven days into the future for all U.S. counties.
arXiv Detail & Related papers (2020-07-31T23:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.