Engineering a Josephson junction chain for the simulation of the clock model
- URL: http://arxiv.org/abs/2408.14549v1
- Date: Mon, 26 Aug 2024 18:01:22 GMT
- Title: Engineering a Josephson junction chain for the simulation of the clock model
- Authors: Matteo M. Wauters, Lorenzo Maffi, Michele Burrello,
- Abstract summary: fabrication techniques and high-quality semiconductor-superconductor interfaces allowed for unprecedented tunability of Josephson junction arrays (JJA)
We show that few experimentally accessible control parameters allow for the exploration of the rich phase diagrams of the associated low-energy field theories.
Our results expand the horizon for analog quantum simulations with JJAs towards models that can not be efficiently captured with qubit architectures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The continuous improvement of fabrication techniques and high-quality semiconductor-superconductor interfaces allowed for unprecedented tunability of Josephson junction arrays (JJA), making them a promising candidate for analog quantum simulations of many-body phenomena. While most experimental proposals so far focused on quantum simulations of ensembles of two-level systems, the possibility of tuning the current-phase relation beyond the sinusoidal regime paves the way for studying statistical physics models with larger local Hilbert spaces. Here, we investigate a particular JJA architecture that can be mapped into a $\mathbb{Z}_3$ clock model. Through matrix-product-states simulations and bosonization analysis, we show that few experimentally accessible control parameters allow for the exploration of the rich phase diagrams of the associated low-energy field theories. Our results expand the horizon for analog quantum simulations with JJAs towards models that can not be efficiently captured with qubit architectures.
Related papers
- Progress in Trapped-Ion Quantum Simulation [0.46873264197900916]
Trapped ions offer long coherence times and high fidelity, programmable quantum operations.
Digital (gate-based) quantum simulations exploit trapped-ion hardware capabilities.
arXiv Detail & Related papers (2024-09-04T18:00:02Z) - Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices [0.8453109131640921]
Local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox.
We show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis.
Finally, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments.
arXiv Detail & Related papers (2024-06-04T17:59:45Z) - Quantum simulation costs for Suzuki-Trotter decomposition of quantum
many-body lattice models [0.0]
We develop a formalism to compute bounds on the number of Trotter steps needed to accurately simulate the time evolution of fermionic lattice models.
We find that, while a naive comparison of the Trotter depth first seems to favor the Hubbard model, careful consideration of the model parameters leads to a substantial advantage in favor of the t-J model.
arXiv Detail & Related papers (2023-02-09T15:32:43Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum Simulation of the Bosonic Creutz Ladder with a Parametric Cavity [5.336258422653554]
We use a multimode superconducting parametric cavity as a hardware-efficient analog quantum simulator.
We realize a lattice in synthetic dimensions with complex hopping interactions.
The complex-valued hopping interaction further allows us to simulate, for instance, gauge potentials and topological models.
arXiv Detail & Related papers (2021-01-11T14:46:39Z) - Quantum simulations with complex geometries and synthetic gauge fields
in a trapped ion chain [0.0]
We introduce a technique that can substantially extend the reach of quantum simulators using an external field gradient along the ion chain and a global, uniform driving field.
The technique can be used to generate both static and time-varying synthetic gauge fields in a linear chain of trapped ions.
It enables continuous simulation of geometries of a variety of coupling and topologies, including periodic boundary conditions and high dimensional Hamiltonians.
arXiv Detail & Related papers (2020-07-04T16:48:09Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.