A Survey of Camouflaged Object Detection and Beyond
- URL: http://arxiv.org/abs/2408.14562v1
- Date: Mon, 26 Aug 2024 18:23:22 GMT
- Title: A Survey of Camouflaged Object Detection and Beyond
- Authors: Fengyang Xiao, Sujie Hu, Yuqi Shen, Chengyu Fang, Jinfa Huang, Chunming He, Longxiang Tang, Ziyun Yang, Xiu Li,
- Abstract summary: Camouflaged Object Detection (COD) refers to the task of identifying and segmenting objects that blend seamlessly into their surroundings.
In recent years, COD has garnered widespread attention due to its potential applications in surveillance, wildlife conservation, autonomous systems, and more.
This paper explores various COD methods across four domains, including both image-level and video-level solutions.
- Score: 19.418542867580374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camouflaged Object Detection (COD) refers to the task of identifying and segmenting objects that blend seamlessly into their surroundings, posing a significant challenge for computer vision systems. In recent years, COD has garnered widespread attention due to its potential applications in surveillance, wildlife conservation, autonomous systems, and more. While several surveys on COD exist, they often have limitations in terms of the number and scope of papers covered, particularly regarding the rapid advancements made in the field since mid-2023. To address this void, we present the most comprehensive review of COD to date, encompassing both theoretical frameworks and practical contributions to the field. This paper explores various COD methods across four domains, including both image-level and video-level solutions, from the perspectives of traditional and deep learning approaches. We thoroughly investigate the correlations between COD and other camouflaged scenario methods, thereby laying the theoretical foundation for subsequent analyses. Beyond object-level detection, we also summarize extended methods for instance-level tasks, including camouflaged instance segmentation, counting, and ranking. Additionally, we provide an overview of commonly used benchmarks and evaluation metrics in COD tasks, conducting a comprehensive evaluation of deep learning-based techniques in both image and video domains, considering both qualitative and quantitative performance. Finally, we discuss the limitations of current COD models and propose 9 promising directions for future research, focusing on addressing inherent challenges and exploring novel, meaningful technologies. For those interested, a curated list of COD-related techniques, datasets, and additional resources can be found at https://github.com/ChunmingHe/awesome-concealed-object-segmentation
Related papers
- Deep Learning for Video Anomaly Detection: A Review [52.74513211976795]
Video anomaly detection (VAD) aims to discover behaviors or events deviating from the normality in videos.
In the era of deep learning, a great variety of deep learning based methods are constantly emerging for the VAD task.
This review covers the spectrum of five different categories, namely, semi-supervised, weakly supervised, fully supervised, unsupervised and open-set supervised VAD.
arXiv Detail & Related papers (2024-09-09T07:31:16Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot object detection (FSOD) combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples.
This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years.
arXiv Detail & Related papers (2024-04-07T03:37:29Z) - Large Model Based Referring Camouflaged Object Detection [51.80619142347807]
Referring camouflaged object detection (Ref-COD) is a recently-proposed problem aiming to segment out specified camouflaged objects matched with a textual or visual reference.
Our motivation is to make full use of the semantic intelligence and intrinsic knowledge of recent Multimodal Large Language Models (MLLMs) to decompose this complex task in a human-like way.
We propose a large-model-based Multi-Level Knowledge-Guided multimodal method for Ref-COD termed MLKG.
arXiv Detail & Related papers (2023-11-28T13:45:09Z) - When Super-Resolution Meets Camouflaged Object Detection: A Comparison
Study [135.19004496785408]
Super Resolution (SR) and Camouflaged Object Detection (COD) are two hot topics in computer vision with various joint applications.
We benchmark different super-resolution methods on commonly used COD datasets.
We evaluate the robustness of different COD models by using COD data processed by SR methods.
arXiv Detail & Related papers (2023-08-08T16:17:46Z) - Recent Advances in Embedding Methods for Multi-Object Tracking: A Survey [71.10448142010422]
Multi-object tracking (MOT) aims to associate target objects across video frames in order to obtain entire moving trajectories.
Embedding methods play an essential role in object location estimation and temporal identity association in MOT.
We first conduct a comprehensive overview with in-depth analysis for embedding methods in MOT from seven different perspectives.
arXiv Detail & Related papers (2022-05-22T06:54:33Z) - Deep Learning on Monocular Object Pose Detection and Tracking: A
Comprehensive Overview [8.442460766094674]
Object pose detection and tracking has attracted increasing attention due to its wide applications in many areas, such as autonomous driving, robotics, and augmented reality.
Deep learning is the most promising one that has shown better performance than others.
This paper presents a comprehensive review of recent progress in object pose detection and tracking that belongs to the deep learning technical route.
arXiv Detail & Related papers (2021-05-29T12:59:29Z) - Concealed Object Detection [140.98738087261887]
We present the first systematic study on concealed object detection (COD)
COD aims to identify objects that are "perfectly" embedded in their background.
To better understand this task, we collect a large-scale dataset called COD10K.
arXiv Detail & Related papers (2021-02-20T06:49:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.