Seamless Detection: Unifying Salient Object Detection and Camouflaged Object Detection
- URL: http://arxiv.org/abs/2412.16840v1
- Date: Sun, 22 Dec 2024 03:25:43 GMT
- Title: Seamless Detection: Unifying Salient Object Detection and Camouflaged Object Detection
- Authors: Yi Liu, Chengxin Li, Xiaohui Dong, Lei Li, Dingwen Zhang, Shoukun Xu, Jungong Han,
- Abstract summary: We propose a task-agnostic framework to unify Salient Object Detection (SOD) and Camouflaged Object Detection (COD)
We design a simple yet effective contextual decoder involving the interval-layer and global context, which achieves an inference speed of 67 fps.
Experiments on public SOD and COD datasets demonstrate the superiority of our proposed framework in both supervised and unsupervised settings.
- Score: 73.85890512959861
- License:
- Abstract: Achieving joint learning of Salient Object Detection (SOD) and Camouflaged Object Detection (COD) is extremely challenging due to their distinct object characteristics, i.e., saliency and camouflage. The only preliminary research treats them as two contradictory tasks, training models on large-scale labeled data alternately for each task and assessing them independently. However, such task-specific mechanisms fail to meet real-world demands for addressing unknown tasks effectively. To address this issue, in this paper, we pioneer a task-agnostic framework to unify SOD and COD. To this end, inspired by the agreeable nature of binary segmentation for SOD and COD, we propose a Contrastive Distillation Paradigm (CDP) to distil the foreground from the background, facilitating the identification of salient and camouflaged objects amidst their surroundings. To probe into the contribution of our CDP, we design a simple yet effective contextual decoder involving the interval-layer and global context, which achieves an inference speed of 67 fps. Besides the supervised setting, our CDP can be seamlessly integrated into unsupervised settings, eliminating the reliance on extensive human annotations. Experiments on public SOD and COD datasets demonstrate the superiority of our proposed framework in both supervised and unsupervised settings, compared with existing state-of-the-art approaches. Code is available on https://github.com/liuyi1989/Seamless-Detection.
Related papers
- SurANet: Surrounding-Aware Network for Concealed Object Detection via Highly-Efficient Interactive Contrastive Learning Strategy [55.570183323356964]
We propose a novel Surrounding-Aware Network, namely SurANet, for concealed object detection.
We enhance the semantics of feature maps using differential fusion of surrounding features to highlight concealed objects.
Next, a Surrounding-Aware Contrastive Loss is applied to identify the concealed object via learning surrounding feature maps contrastively.
arXiv Detail & Related papers (2024-10-09T13:02:50Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Occlusion-Aware Detection and Re-ID Calibrated Network for Multi-Object
Tracking [38.36872739816151]
Occlusion-Aware Attention (OAA) module in the detector highlights the object features while suppressing the occluded background regions.
OAA can serve as a modulator that enhances the detector for some potentially occluded objects.
We design a Re-ID embedding matching block based on the optimal transport problem.
arXiv Detail & Related papers (2023-08-30T06:56:53Z) - Joint Salient Object Detection and Camouflaged Object Detection via
Uncertainty-aware Learning [47.253370009231645]
We introduce an uncertainty-aware learning pipeline to explore the contradictory information of salient object detection (SOD) and camouflaged object detection (COD)
Our solution leads to both state-of-the-art performance and informative uncertainty estimation.
arXiv Detail & Related papers (2023-07-10T15:49:37Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Open-Set Semi-Supervised Object Detection [43.464223594166654]
Recent developments for Semi-Supervised Object Detection (SSOD) have shown the promise of leveraging unlabeled data to improve an object detector.
We consider a more practical yet challenging problem, Open-Set Semi-Supervised Object Detection (OSSOD)
Our proposed framework effectively addresses the semantic expansion issue and shows consistent improvements on many OSSOD benchmarks.
arXiv Detail & Related papers (2022-08-29T17:04:30Z) - Uncertainty-aware Joint Salient Object and Camouflaged Object Detection [43.01556978979627]
We propose a paradigm of leveraging the contradictory information to enhance the detection ability of both salient object detection and camouflaged object detection.
We introduce a similarity measure module to explicitly model the contradicting attributes of these two tasks.
Considering the uncertainty of labeling in both tasks' datasets, we propose an adversarial learning network to achieve both higher order similarity measure and network confidence estimation.
arXiv Detail & Related papers (2021-04-06T16:05:10Z) - Progressive Object Transfer Detection [84.48927705173494]
We propose a novel Progressive Object Transfer Detection (POTD) framework.
First, POTD can leverage various object supervision of different domains effectively into a progressive detection procedure.
Second, POTD consists of two delicate transfer stages, i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer Detection (WSTD)
arXiv Detail & Related papers (2020-02-12T00:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.