Securing Biometric Data: Fully Homomorphic Encryption in Multimodal Iris and Face Recognition
- URL: http://arxiv.org/abs/2408.14609v1
- Date: Mon, 26 Aug 2024 20:05:48 GMT
- Title: Securing Biometric Data: Fully Homomorphic Encryption in Multimodal Iris and Face Recognition
- Authors: Surendra Singh, Lambert Igene, Stephanie Schuckers,
- Abstract summary: This research explores methods for fusing iris and face feature vectors and implements robust security measures to protect fused databases.
Evaluations on the QFIRE-I database demonstrate that our method effectively balances user privacy and accuracy while maintaining a high level of precision.
- Score: 1.1470070927586018
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Multimodal biometric systems have gained popularity for their enhanced recognition accuracy and resistance to attacks like spoofing. This research explores methods for fusing iris and face feature vectors and implements robust security measures to protect fused databases and conduct matching operations on encrypted templates using fully homomorphic encryption (FHE). Evaluations on the QFIRE-I database demonstrate that our method effectively balances user privacy and accuracy while maintaining a high level of precision. Through experimentation, we demonstrate the effectiveness of employing FHE for template protection and matching within the encrypted domain, achieving notable results: a 96.41% True Acceptance Rate (TAR) for iris recognition, 81.19% TAR for face recognition, 98.81% TAR for iris fusion (left and right), and achieving a 100% TAR at 0.1% false acceptance rate (FAR) for face and iris fusion. The application of FHE presents a promising solution for ensuring accurate template matching while safeguarding user privacy and mitigating information leakage.
Related papers
- TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - Embedding Non-Distortive Cancelable Face Template Generation [22.80706131626207]
We introduce an innovative image distortion technique that makes facial images unrecognizable to the eye but still identifiable by any custom embedding neural network model.
We test the reliability of biometric recognition networks by determining the maximum image distortion that does not change the predicted identity.
arXiv Detail & Related papers (2024-02-04T15:39:18Z) - Privacy-Preserving Face Recognition in Hybrid Frequency-Color Domain [16.05230409730324]
Face image is a sensitive biometric attribute tied to the identity information of each user.
This paper proposes a hybrid frequency-color fusion approach to reduce the input dimensionality of face recognition.
It has around 2.6% to 4.2% higher accuracy than the state-of-the-art in the 1:N verification scenario.
arXiv Detail & Related papers (2024-01-24T11:27:32Z) - PROFL: A Privacy-Preserving Federated Learning Method with Stringent
Defense Against Poisoning Attacks [2.6487166137163007]
Federated Learning (FL) faces two major issues: privacy leakage and poisoning attacks.
We propose a novel privacy-preserving Byzantine-robust FL framework PROFL.
PROFL is based on the two-trapdoor additional homomorphic encryption algorithm and blinding techniques.
arXiv Detail & Related papers (2023-12-02T06:34:37Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Enhancing Mobile Privacy and Security: A Face Skin Patch-Based
Anti-Spoofing Approach [0.0]
Face anti-spoofing system(FAS) for face recognition is an important component used to enhance the security of face recognition systems.
Traditional FAS used images containing identity information to detect spoofing traces, however there is a risk of privacy leakage during the transmission and storage of these images.
We propose a face anti-spoofing algorithm based on facial skin patches leveraging pure facial skin patch images as input.
arXiv Detail & Related papers (2023-08-09T08:36:13Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtect produces more natural-looking encrypted images than state-of-the-art methods.
It achieves significantly higher attack success rates, e.g., 24.5% and 25.1% absolute improvements on the CelebA-HQ and FFHQ datasets.
arXiv Detail & Related papers (2023-05-23T02:45:49Z) - Attribute-Guided Encryption with Facial Texture Masking [64.77548539959501]
We propose Attribute Guided Encryption with Facial Texture Masking to protect users from unauthorized facial recognition systems.
Our proposed method produces more natural-looking encrypted images than state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T23:50:43Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.