論文の概要: MODOC: A Modular Interface for Flexible Interlinking of Text Retrieval and Text Generation Functions
- arxiv url: http://arxiv.org/abs/2408.14623v1
- Date: Mon, 26 Aug 2024 20:36:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:44:05.372690
- Title: MODOC: A Modular Interface for Flexible Interlinking of Text Retrieval and Text Generation Functions
- Title(参考訳): MODOC: テキスト検索とテキスト生成関数のフレキシブルなインターリンクのためのモジュールインタフェース
- Authors: Yingqiang Gao, Jhony Prada, Nianlong Gu, Jessica Lam, Richard H. R. Hahnloser,
- Abstract要約: 大きな言語モデル(LLM)は雄弁なテキストを生成するが、しばしばそれらが生成するコンテンツを検証する必要がある。
従来の情報検索システムは、このタスクを補助するが、ほとんどのシステムはLLM生成クエリを念頭に設計されていない。
モジュール型ユーザインタフェースであるMODOCについて述べる。
- 参考スコア(独自算出の注目度): 8.624104798224085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) produce eloquent texts but often the content they generate needs to be verified. Traditional information retrieval systems can assist with this task, but most systems have not been designed with LLM-generated queries in mind. As such, there is a compelling need for integrated systems that provide both retrieval and generation functionality within a single user interface. We present MODOC, a modular user interface that leverages the capabilities of LLMs and provides assistance with detecting their confabulations, promoting integrity in scientific writing. MODOC represents a significant step forward in scientific writing assistance. Its modular architecture supports flexible functions for retrieving information and for writing and generating text in a single, user-friendly interface.
- Abstract(参考訳): 大きな言語モデル(LLM)は雄弁なテキストを生成するが、しばしばそれらが生成するコンテンツを検証する必要がある。
従来の情報検索システムは、このタスクを補助するが、ほとんどのシステムはLLM生成クエリを念頭に設計されていない。
そのため、単一のユーザインタフェース内で検索機能と生成機能の両方を提供する統合システムには、魅力的なニーズがある。
本稿は, LLMの能力を活用し, コミュニケーションの検出, 科学的文章の完全性向上を支援するモジュール型ユーザインタフェースMODOCを提案する。
MODOCは科学的な執筆支援において重要な一歩である。
モジュラーアーキテクチャは、情報を取得し、単一のユーザフレンドリーなインターフェースでテキストを書き、生成するための柔軟な機能をサポートする。
関連論文リスト
- Text-like Encoding of Collaborative Information in Large Language Models for Recommendation [58.87865271693269]
BinLLMはLarge Language Models for Recommendation (LLMRec)とシームレスに連携する新しい手法である。
BinLLMは、外部モデルからの協調的な埋め込みをバイナリシーケンスに変換する。
BinLLMは、ドット決定記法を用いてバイナリシーケンスを圧縮するオプションを提供し、過度に長い長さを避ける。
論文 参考訳(メタデータ) (2024-06-05T12:45:25Z) - S3LLM: Large-Scale Scientific Software Understanding with LLMs using Source, Metadata, and Document [8.518000504951404]
大規模言語モデル(LLM)は、複雑な科学的コードを理解するための新しい経路を提供する。
S3LLMは、ソースコード、コードメタデータ、要約された情報を対話的で対話的な方法で検証できるように設計されたフレームワークである。
S3LLMは、大規模科学計算ソフトウェアを迅速に理解するために、ローカルにデプロイされたオープンソースLLMを使用する可能性を実証している。
論文 参考訳(メタデータ) (2024-03-15T17:04:27Z) - Large Language User Interfaces: Voice Interactive User Interfaces powered by LLMs [5.06113628525842]
ユーザとユーザインターフェース(UI)の仲介として機能するフレームワークを提案する。
アノテーションの形でUIコンポーネントのテキストセマンティックマッピングに立つシステムを採用している。
我々のエンジンは、最も適切なアプリケーションを分類し、関連するパラメータを抽出し、その後、ユーザの期待するアクションの正確な予測を実行することができる。
論文 参考訳(メタデータ) (2024-02-07T21:08:49Z) - Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation
for Generative AI [15.220987187105607]
Unitxtは、生成言語モデルに適した、カスタマイズ可能なテキストデータ準備と評価のための革新的なライブラリである。
UnitxtはHFaceやLM-eval-harnessといった一般的なライブラリと統合されており、実践者間のカスタマイズや共有が容易である。
Unitxtは、ツール以外にも、コミュニティ主導のプラットフォームで、ユーザがパイプラインを構築し、共有し、前進することを可能にする。
論文 参考訳(メタデータ) (2024-01-25T08:57:33Z) - An Interactive Query Generation Assistant using LLM-based Prompt
Modification and User Feedback [9.461978375200102]
提案するインタフェースは,単言語および多言語文書コレクション上での対話型クエリ生成をサポートする,新しい検索インタフェースである。
このインタフェースにより、ユーザーは異なるLCMによって生成されたクエリを洗練し、検索したドキュメントやパスに対するフィードバックを提供し、より効果的なクエリを生成するプロンプトとしてユーザーのフィードバックを組み込むことができる。
論文 参考訳(メタデータ) (2023-11-19T04:42:24Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
文書理解とは、ウェブページのようなデジタル文書から自動的に情報を抽出し、分析し、理解することである。
既存のMLLM(Multi-model Large Language Models)は、浅いOCRフリーテキスト認識において、望ましくないゼロショット機能を実証している。
論文 参考訳(メタデータ) (2023-07-04T11:28:07Z) - Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and
Text Integration [50.94902442781148]
視覚情報,音声情報,テキスト情報をシームレスに統合する新しい多モード大言語モデル(LLM)を提案する。
Macaw-LLMは、マルチモーダルデータを符号化するモダリティモジュール、事前訓練されたLLMを利用する認知モジュール、多様な表現を調和させるアライメントモジュールの3つの主要コンポーネントから構成される。
我々は,69K画像インスタンスと50Kビデオインスタンスを含む,大規模なマルチモーダル・インストラクション・データセットを構築した。
論文 参考訳(メタデータ) (2023-06-15T12:45:25Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z) - Frugal Prompting for Dialog Models [17.048111072193933]
本研究では,大規模言語モデル(LLM)を用いた対話システム構築のための異なるアプローチについて検討する。
即時チューニングの一環として、インストラクション、例題、現在のクエリ、追加のコンテキストを提供する様々な方法を試行する。
この研究は、最適な使用情報密度を持つダイアログ履歴の表現も分析する。
論文 参考訳(メタデータ) (2023-05-24T09:06:49Z) - Learning Label Modular Prompts for Text Classification in the Wild [56.66187728534808]
そこで本研究では,非定常学習/テスト段階の異なるテキスト分類手法を提案する。
複雑なタスクをモジュラー成分に分解することで、そのような非定常環境下での堅牢な一般化が可能になる。
テキスト分類タスクのためのラベルモジュール型プロンプトチューニングフレームワークMODcularPROMPTを提案する。
論文 参考訳(メタデータ) (2022-11-30T16:26:38Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
本稿では,既存のモデルで解けるより単純なモデルに分解することで,複雑なタスクを解くための解釈可能なシステムを構築するためのフレームワークを提案する。
我々はこのフレームワークを用いて、ニューラルネットワークのファクトイド単一スパンQAモデルとシンボリック電卓で答えられるサブクエストに分解することで、マルチホップ推論問題に答えられるシステムであるModularQAを構築する。
論文 参考訳(メタデータ) (2020-09-01T23:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。