論文の概要: Model-Based Reinforcement Learning for Control of Strongly-Disturbed Unsteady Aerodynamic Flows
- arxiv url: http://arxiv.org/abs/2408.14685v1
- Date: Mon, 26 Aug 2024 23:21:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:24:16.435183
- Title: Model-Based Reinforcement Learning for Control of Strongly-Disturbed Unsteady Aerodynamic Flows
- Title(参考訳): 強変形非定常空力流の制御のためのモデルベース強化学習
- Authors: Zhecheng Liu, Diederik Beckers, Jeff D. Eldredge,
- Abstract要約: 本稿では,モデルに基づく強化学習(MBRL)手法を提案する。
モデルの堅牢性と一般化性は、2つの異なる流れ環境で実証される。
そこで本研究では,低次環境下で学んだ政策が,フルCFD環境における効果的な制御戦略に変換されることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The intrinsic high dimension of fluid dynamics is an inherent challenge to control of aerodynamic flows, and this is further complicated by a flow's nonlinear response to strong disturbances. Deep reinforcement learning, which takes advantage of the exploratory aspects of reinforcement learning (RL) and the rich nonlinearity of a deep neural network, provides a promising approach to discover feasible control strategies. However, the typical model-free approach to reinforcement learning requires a significant amount of interaction between the flow environment and the RL agent during training, and this high training cost impedes its development and application. In this work, we propose a model-based reinforcement learning (MBRL) approach by incorporating a novel reduced-order model as a surrogate for the full environment. The model consists of a physics-augmented autoencoder, which compresses high-dimensional CFD flow field snaphsots into a three-dimensional latent space, and a latent dynamics model that is trained to accurately predict the long-time dynamics of trajectories in the latent space in response to action sequences. The robustness and generalizability of the model is demonstrated in two distinct flow environments, a pitching airfoil in a highly disturbed environment and a vertical-axis wind turbine in a disturbance-free environment. Based on the trained model in the first problem, we realize an MBRL strategy to mitigate lift variation during gust-airfoil encounters. We demonstrate that the policy learned in the reduced-order environment translates to an effective control strategy in the full CFD environment.
- Abstract(参考訳): 流体力学の本質的な高次元は空気力学の制御に固有の課題であり、強い乱れに対する流れの非線形応答によりさらに複雑である。
強化学習(RL)の探索的側面と深層ニューラルネットワークのリッチ非線形性を活用する深層強化学習は、実現可能な制御戦略を発見するための有望なアプローチを提供する。
しかし、強化学習に対する典型的なモデルフリーアプローチは、トレーニング中にフロー環境とRLエージェントとの間のかなりの量の相互作用を必要とし、この高いトレーニングコストは、その開発と応用を妨げる。
本研究では,モデルに基づく強化学習(MBRL)手法を提案する。
このモデルは、高次元CFDフローフィールドスナッソスを3次元潜在空間に圧縮する物理拡張オートエンコーダと、動作シーケンスに応じて潜在空間における軌道の長時間のダイナミクスを正確に予測するために訓練された潜在ダイナミクスモデルとから構成される。
このモデルのロバスト性および一般化性は、2つの異なる流れ環境, 非常に乱れた環境での投球翼, 乱れのない環境での垂直軸風力タービンで示される。
第一問題における訓練モデルに基づいて、ガスト翼衝突時の昇降変動を緩和するMBRL戦略を実現する。
そこで本研究では,低次環境下で学んだ政策が,フルCFD環境における効果的な制御戦略に変換されることを実証する。
関連論文リスト
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
本稿では,モデルベース制御とRLベース制御を統合し,ロバスト性を高めるニューラル内部モデル制御を提案する。
我々のフレームワークは、剛体力学にニュートン・オイラー方程式を適用することで予測モデルを合理化し、複雑な高次元非線形性を捉える必要がなくなる。
本研究では,四足歩行ロボットと四足歩行ロボットにおけるフレームワークの有効性を実証し,最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T07:07:42Z) - Physics Enhanced Residual Policy Learning (PERPL) for safety cruising in mixed traffic platooning under actuator and communication delay [8.172286651098027]
線形制御モデルは、その単純さ、使いやすさ、安定性解析のサポートにより、車両制御に広範囲に応用されている。
一方、強化学習(RL)モデルは適応性を提供するが、解釈可能性や一般化能力の欠如に悩まされる。
本稿では,物理インフォームドポリシによって強化されたRL制御系の開発を目標とする。
論文 参考訳(メタデータ) (2024-09-23T23:02:34Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
本稿では,知識インフォームドモデルに基づく残留強化学習フレームワークを提案する。
交通専門家の知識を仮想環境モデルに統合し、基本力学にIntelligent Driver Model(IDM)、残留力学にニューラルネットワークを使用する。
本稿では,従来の制御手法を残差RLと組み合わせて,スクラッチから学習することなく,効率的な学習と政策最適化を容易にする新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-08-30T16:16:57Z) - Expressive and Generalizable Low-rank Adaptation for Large Models via Slow Cascaded Learning [55.5715496559514]
LoRA Slow Cascade Learning (LoRASC)は、LoRAの表現性と一般化能力を高めるために設計された革新的な技術である。
提案手法は,混合低ランク適応を可能にするカスケード学習戦略により表現性を増強し,複雑なパターンをキャプチャするモデルの能力を高める。
論文 参考訳(メタデータ) (2024-07-01T17:28:59Z) - Two-step dynamic obstacle avoidance [0.0]
本稿では、教師付きおよび強化学習(RL)を組み合わせることにより、動的障害物回避(DOA)タスクを扱うための2段階アーキテクチャを提案する。
最初のステップでは、リカレントニューラルネットワークを用いて障害物の衝突リスク(CR)を推定するデータ駆動アプローチを導入する。
第2ステップでは、これらのCR推定値をRLエージェントの観察空間に含め、その状況意識を高める。
論文 参考訳(メタデータ) (2023-11-28T14:55:50Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Turbulence control in plane Couette flow using low-dimensional neural
ODE-based models and deep reinforcement learning [0.0]
DManD-RL (data-driven manifold dynamics-RL) は,データ駆動型低次元モデルを生成する。
我々はRL制御エージェントを訓練し、数値シミュレーションで440倍のスピードアップを達成した。
エージェントは900時間以内の未確認DNSテストトラジェクトリの84%をラミナライズするポリシーを学習する。
論文 参考訳(メタデータ) (2023-01-28T05:47:10Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
グローバルなダイナミクスモデルを学習するタスクを,(a)ローカルなダイナミクスをキャプチャするコンテキスト潜在ベクトルを学習し,(b)次に条件付き状態を予測するという2つの段階に分割する。
本研究では,コンテキスト潜在ベクトルに動的情報をエンコードするために,コンテキスト潜在ベクトルを前方と後方の両方のダイナミクスを予測するのに役立つような新しい損失関数を導入する。
提案手法は,既存のRL方式と比較して,様々なシミュレーションロボットや制御タスクの一般化能力に優れる。
論文 参考訳(メタデータ) (2020-05-14T08:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。