論文の概要: StyleSpeech: Parameter-efficient Fine Tuning for Pre-trained Controllable Text-to-Speech
- arxiv url: http://arxiv.org/abs/2408.14713v1
- Date: Tue, 27 Aug 2024 00:37:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:24:16.413189
- Title: StyleSpeech: Parameter-efficient Fine Tuning for Pre-trained Controllable Text-to-Speech
- Title(参考訳): StyleSpeech: 事前学習可能なテキスト・トゥ・音声のためのパラメータ効率の良い微調整
- Authors: Haowei Lou, Helen Paik, Wen Hu, Lina Yao,
- Abstract要約: StyleSpeechは、合成音声の自然性と精度を高める新しいテキスト音声合成システムである。
既存のTS技術に基づいて、StyleSpeechには独自のStyle Decorator構造が組み込まれており、ディープラーニングモデルでスタイルと音素の特徴を同時に学習することができる。
LoRAは、事前訓練されたモデルにおけるスタイル機能の効率的な適応を可能にする。
- 参考スコア(独自算出の注目度): 13.713209707407712
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces StyleSpeech, a novel Text-to-Speech~(TTS) system that enhances the naturalness and accuracy of synthesized speech. Building upon existing TTS technologies, StyleSpeech incorporates a unique Style Decorator structure that enables deep learning models to simultaneously learn style and phoneme features, improving adaptability and efficiency through the principles of Lower Rank Adaptation~(LoRA). LoRA allows efficient adaptation of style features in pre-trained models. Additionally, we introduce a novel automatic evaluation metric, the LLM-Guided Mean Opinion Score (LLM-MOS), which employs large language models to offer an objective and robust protocol for automatically assessing TTS system performance. Extensive testing on benchmark datasets shows that our approach markedly outperforms existing state-of-the-art baseline methods in producing natural, accurate, and high-quality speech. These advancements not only pushes the boundaries of current TTS system capabilities, but also facilitate the application of TTS system in more dynamic and specialized, such as interactive virtual assistants, adaptive audiobooks, and customized voice for gaming. Speech samples can be found in https://style-speech.vercel.app
- Abstract(参考訳): 本稿では,合成音声の自然性と精度を高める新しい音声合成システムであるStyleSpeechを紹介する。
既存のTS技術に基づいて、StyleSpeechは独自のStyle Decorator構造を導入し、ディープラーニングモデルでスタイルと音素の特徴を同時に学習し、ローワーランク適応(LoRA)の原則によって適応性と効率を向上させる。
LoRAは、事前訓練されたモデルにおけるスタイル機能の効率的な適応を可能にする。
さらに,新たな自動評価基準であるLLM-MOS(LLM-Guided Mean Opinion Score)を導入する。
ベンチマークデータセットの大規模なテストは、我々のアプローチが、自然で正確で高品質な音声を生成するために、既存の最先端のベースライン手法を著しく上回っていることを示している。
これらの進歩は、現在のTSシステム機能の境界を推し進めるだけでなく、インタラクティブなバーチャルアシスタント、アダプティブオーディオブック、ゲーム用にカスタマイズされた音声など、よりダイナミックで専門的なTSシステムの応用を促進する。
音声サンプルはhttps://style-speech.vercel.appで確認できる。
関連論文リスト
- Noise-robust zero-shot text-to-speech synthesis conditioned on
self-supervised speech-representation model with adapters [47.75276947690528]
ゼロショットテキスト音声(TTS)法は,話者特性を極めて正確に再現することができる。
しかし、この手法は、参照音声が雑音を含む場合、音声合成品質の劣化に悩まされる。
本稿では,ノイズロストゼロショットTS法を提案する。
論文 参考訳(メタデータ) (2024-01-10T12:21:21Z) - Pruning Self-Attention for Zero-Shot Multi-Speaker Text-to-Speech [26.533600745910437]
本稿では,TSモデルの一般化能力を向上させるために,スパースアテンション(sparse attention)と呼ばれる変圧器の効率的なプルーニング法を提案する。
また,モデルがしきい値を自動的に学習することのできる,新しい微分可能なプルーニング手法を提案する。
論文 参考訳(メタデータ) (2023-08-28T21:25:05Z) - TextrolSpeech: A Text Style Control Speech Corpus With Codec Language
Text-to-Speech Models [51.529485094900934]
リッチテキスト属性を付加した最初の大規模音声感情データセットであるTextrolSpeechを提案する。
本稿では,GPTモデルを利用した多段階プロンプトプログラミング手法を提案する。
そこで我々は,より多様なスタイルで音声を生成する必要性に対処するため,Salleと呼ばれる効率的なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-28T09:06:32Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
我々は、YouTubeやポッドキャストから現実の音声を使ってTSシステムを訓練する。
最近のText-to-Speechアーキテクチャは、複数のコード生成とモノトニックアライメントのために設計されている。
近年のテキスト・トゥ・スペーチ・アーキテクチャは,いくつかの客観的・主観的尺度において,既存のTSシステムより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-08T17:34:32Z) - Any-speaker Adaptive Text-To-Speech Synthesis with Diffusion Models [65.28001444321465]
Grad-StyleSpeechは拡散モデルに基づく任意の話者適応型TSフレームワークである。
数秒の参照音声が与えられた場合、ターゲット話者の声と非常によく似た、非常に自然な音声を生成することができる。
英語のベンチマークでは、話者適応型TTSベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2022-11-17T07:17:24Z) - GenerSpeech: Towards Style Transfer for Generalizable Out-Of-Domain
Text-to-Speech Synthesis [68.42632589736881]
本稿では,OODカスタム音声の高忠実度ゼロショットスタイル転送に向けたテキスト音声合成モデルGenerSpeechを提案する。
GenerSpeechは、2つのコンポーネントを導入することで、音声のバリエーションをスタイルに依存しない部分とスタイル固有の部分に分解する。
ゼロショット方式の転送について評価したところ,GenerSpeechは音質やスタイルの類似性の観点から,最先端のモデルを上回っていることがわかった。
論文 参考訳(メタデータ) (2022-05-15T08:16:02Z) - Voice Filter: Few-shot text-to-speech speaker adaptation using voice
conversion as a post-processing module [16.369219400819134]
最先端の音声合成システム(TTS)は、高品質な合成音声を生成するために、数時間の音声データを記録する必要がある。
トレーニングデータの量を減らす場合、標準のTSモデルは音声品質と知性劣化に悩まされる。
本稿では,ターゲット話者からの音声を1分以内で処理するVoice Filterという,非常に低リソースなTTS手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T16:12:21Z) - Meta-TTS: Meta-Learning for Few-Shot Speaker Adaptive Text-to-Speech [62.95422526044178]
マルチスピーカTSモデルのトレーニングアルゴリズムとして,MAML(Model Agnostic Meta-Learning)を用いる。
その結果,Meta-TTSは話者適応ベースラインよりも適応ステップが少ない少数のサンプルから高い話者類似性音声を合成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-07T09:53:31Z) - Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation [63.561944239071615]
StyleSpeechは、高品質な音声を合成し、新しい話者に適応する新しいTSモデルである。
SALNでは、単一音声音声からでもターゲット話者のスタイルで音声を効果的に合成する。
提案手法をMeta-StyleSpeechに拡張するには,スタイルプロトタイプで訓練された2つの識別器を導入し,エピソード訓練を行う。
論文 参考訳(メタデータ) (2021-06-06T15:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。