論文の概要: RSTeller: Scaling Up Visual Language Modeling in Remote Sensing with Rich Linguistic Semantics from Openly Available Data and Large Language Models
- arxiv url: http://arxiv.org/abs/2408.14744v1
- Date: Tue, 27 Aug 2024 02:45:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:14:31.872249
- Title: RSTeller: Scaling Up Visual Language Modeling in Remote Sensing with Rich Linguistic Semantics from Openly Available Data and Large Language Models
- Title(参考訳): RSTeller: 公開データと大規模言語モデルによるリッチ言語意味論によるリモートセンシングにおけるビジュアル言語モデリングのスケールアップ
- Authors: Junyao Ge, Yang Zheng, Kaitai Guo, Jimin Liang,
- Abstract要約: 我々は,Google Earth Engine (GEE) プラットフォームから取得した画像に対して,平易な OpenStreetMap (OSM) データから,意味的に豊富なキャプションを持つマルチモーダルデータセットを大規模に生成するワークフローを提案する。
本稿では,100万以上のRS画像からなるマルチモーダルデータセットであるRSTellerについて述べる。
- 参考スコア(独自算出の注目度): 3.178739428363249
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Abundant, well-annotated multimodal data in remote sensing are pivotal for aligning complex visual remote sensing (RS) scenes with human language, enabling the development of specialized vision language models across diverse RS interpretation tasks. However, annotating RS images with rich linguistic semantics at scale demands expertise in RS and substantial human labor, making it costly and often impractical. In this study, we propose a workflow that leverages large language models (LLMs) to generate multimodal datasets with semantically rich captions at scale from plain OpenStreetMap (OSM) data for images sourced from the Google Earth Engine (GEE) platform. This approach facilitates the generation of paired remote sensing data and can be readily scaled up using openly available data. Within this framework, we present RSTeller, a multimodal dataset comprising over 1 million RS images, each accompanied by multiple descriptive captions. Extensive experiments demonstrate that RSTeller enhances the performance of multiple existing vision language models for RS scene understanding through continual pre-training. Our methodology significantly reduces the manual effort and expertise needed for annotating remote sensing imagery while democratizing access to high-quality annotated data. This advancement fosters progress in visual language modeling and encourages broader participation in remote sensing research and applications. The RSTeller dataset is available at https://github.com/SlytherinGe/RSTeller.
- Abstract(参考訳): 複雑な視覚的リモートセンシング(RS)シーンと人間の言語との整合を図り、多様なRS解釈タスクにまたがる特殊な視覚言語モデルの開発を可能にする。
しかし、RS画像にリッチな言語意味論の注釈を付けるには、RSの専門知識と相当な人的労働が必要であるため、コストがかかり、しばしば実用的ではない。
本研究では,Google Earth Engine (GEE) プラットフォームから取得した画像に対する,平易な OpenStreetMap (OSM) データから,大規模に意味豊かなキャプションを持つマルチモーダルデータセットを生成するために,大規模言語モデル(LLM)を活用するワークフローを提案する。
このアプローチにより、ペア化されたリモートセンシングデータの生成が容易になり、オープンなデータを使って簡単にスケールアップできる。
本稿では,100万以上のRS画像からなるマルチモーダルデータセットであるRSTellerについて述べる。
大規模な実験により、RSTellerは連続的な事前学習を通してRSシーン理解のための複数の既存の視覚言語モデルの性能を向上させることが示された。
提案手法は,高品質なアノテートデータへのアクセスを民主化しながら,リモートセンシング画像のアノテートに必要な手作業や専門知識を大幅に削減する。
この進歩は視覚言語モデリングの進歩を促進し、リモートセンシング研究や応用への幅広い参加を促進する。
RSTellerデータセットはhttps://github.com/SlytherinGe/RSTellerで公開されている。
関連論文リスト
- LHRS-Bot-Nova: Improved Multimodal Large Language Model for Remote Sensing Vision-Language Interpretation [21.91073335335992]
リモートセンシング(RS)画像の理解に特化したMLLMであるLHRS-Bot-Novaを紹介する。
LHRS-Bot-Novaは拡張ビジョンエンコーダと新しいブリッジ層を備えており、効率的なビジュアル圧縮と言語ビジョンアライメントを実現している。
RS画像理解タスクにおけるLHRS-Bot-Novaの優れた性能を示す大規模な実験を行った。
論文 参考訳(メタデータ) (2024-11-14T09:23:40Z) - Multilingual Vision-Language Pre-training for the Remote Sensing Domain [4.118895088882213]
コントラスト言語-画像事前学習(CLIP)に基づく手法は、現在、リモートセンシングデータを含む視覚・言語タスクをサポートするために広く使われている。
本研究は,多言語CLIPモデルの微調整を探求する,リモートセンシング領域のための新しいビジョン・アンド・ランゲージモデルを提案する。
提案したモデルでは,Remote Sensing Multilingual CLIP (RS-M-CLIP) と名づけた。
論文 参考訳(メタデータ) (2024-10-30T18:13:11Z) - MMM-RS: A Multi-modal, Multi-GSD, Multi-scene Remote Sensing Dataset and Benchmark for Text-to-Image Generation [25.252173311925027]
マルチモーダル,マルチGSD,マルチシーンリモートセンシング(MMM-RS)データセットと,多様なリモートセンシングシナリオにおけるテキスト・ツー・イメージ生成のためのベンチマークを提案する。
大規模な事前学習型視覚言語モデルを用いて、テキストプロンプトを自動出力し、手作りの修正を行う。
広範囲な手動スクリーニングと修正アノテーションにより、最終的に約2100万のテキストイメージペアからなるMMM-RSデータセットを得る。
論文 参考訳(メタデータ) (2024-10-26T11:19:07Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Probing Multimodal Large Language Models for Global and Local Semantic Representations [57.25949445963422]
マルチモーダル大言語モデルのどの層がグローバルな画像情報に最も力を注いでいるかを検討する。
本研究では,モデルの中間層が,よりグローバルな意味情報を符号化できることを見出した。
最上位のレイヤが過度にローカル情報に集中していることが分かり、グローバル情報をエンコードする能力の低下につながります。
論文 参考訳(メタデータ) (2024-02-27T08:27:15Z) - Large Language Models for Captioning and Retrieving Remote Sensing
Images [4.499596985198142]
RS-CapRetはリモートセンシングタスクのためのVision and Languageメソッドである。
リモートセンシング画像の記述を生成し、テキスト記述から画像を取得することができる。
論文 参考訳(メタデータ) (2024-02-09T15:31:01Z) - MLLMs-Augmented Visual-Language Representation Learning [70.5293060238008]
MLLM(Multi-modal Large Language Models)が視覚言語表現学習を向上させることを実証した。
本手法は単純で,MLLMを用いて画像毎に複数のキャプションを拡張できる。
拡張キャプションの品質と可用性を維持するために,テキストシーリングを提案する。
論文 参考訳(メタデータ) (2023-11-30T18:05:52Z) - GeoChat: Grounded Large Vision-Language Model for Remote Sensing [65.78360056991247]
提案するGeoChatは,高解像度RS画像を用いたマルチタスク対話機能を備えた,世界初の汎用リモートセンシング大型ビジョンランゲージモデル(VLM)である。
具体的には、GeoChatは画像レベルのクエリに応答できるが、リージョン固有の対話を保持するためにリージョン入力を受け付けている。
GeoChatは、画像や領域キャプション、視覚的質問応答、シーン分類、視覚的に接地された会話、参照検出など、様々なRSタスクに対して、堅牢なゼロショット性能を示す。
論文 参考訳(メタデータ) (2023-11-24T18:59:10Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffinフレームワークは、事前訓練された視覚言語モデルを使用して視覚信号のプロバイダとして機能する。
UniMM-Chatデータセットはデータセットの相補性を探求し、高品質で多様なマルチモーダル命令を生成する。
論文 参考訳(メタデータ) (2023-10-01T12:35:18Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
MLLM(Multimodal Large Language Models)の機能を拡張するために, PVIT( Position-enhanced Visual Instruction Tuning)を提案する。
この統合により、MLLMの画像のより詳細な理解が促進される。
本稿では,提案モデルの優位性を示す定量的実験と定性解析の両方について述べる。
論文 参考訳(メタデータ) (2023-08-25T15:33:47Z) - RSGPT: A Remote Sensing Vision Language Model and Benchmark [7.279747655485913]
高品質なリモートセンシング画像キャプチャーデータセット(RSICap)を構築する。
このデータセットは、リッチで高品質な情報を備えた2,585の人称注釈付きキャプションからなる。
また、RSIEvalと呼ばれるベンチマーク評価データセットも提供します。
論文 参考訳(メタデータ) (2023-07-28T02:23:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。