Benchmarking Reinforcement Learning Methods for Dexterous Robotic Manipulation with a Three-Fingered Gripper
- URL: http://arxiv.org/abs/2408.14747v1
- Date: Tue, 27 Aug 2024 02:52:15 GMT
- Title: Benchmarking Reinforcement Learning Methods for Dexterous Robotic Manipulation with a Three-Fingered Gripper
- Authors: Elizabeth Cutler, Yuning Xing, Tony Cui, Brendan Zhou, Koen van Rijnsoever, Ben Hart, David Valencia, Lee Violet C. Ong, Trevor Gee, Minas Liarokapis, Henry Williams,
- Abstract summary: Reinforcement Learning (RL) training is predominantly conducted in cost-effective and controlled simulation environments.
This research explores the direct training of RL algorithms in controlled yet realistic real-world settings for the execution of dexterous manipulation.
- Score: 0.7364531214545392
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reinforcement Learning (RL) training is predominantly conducted in cost-effective and controlled simulation environments. However, the transfer of these trained models to real-world tasks often presents unavoidable challenges. This research explores the direct training of RL algorithms in controlled yet realistic real-world settings for the execution of dexterous manipulation. The benchmarking results of three RL algorithms trained on intricate in-hand manipulation tasks within practical real-world contexts are presented. Our study not only demonstrates the practicality of RL training in authentic real-world scenarios, facilitating direct real-world applications, but also provides insights into the associated challenges and considerations. Additionally, our experiences with the employed experimental methods are shared, with the aim of empowering and engaging fellow researchers and practitioners in this dynamic field of robotics.
Related papers
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks.
Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies.
We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution.
arXiv Detail & Related papers (2024-10-29T08:12:20Z) - Grounded Curriculum Learning [37.95557495560936]
Existing curriculum learning techniques automatically vary the simulation task distribution without considering its relevance to the real world.
We propose Grounded Curriculum Learning (GCL), which aligns the simulated task distribution in the curriculum with the real world.
We validate GCL using the BARN dataset on complex navigation tasks, achieving a 6.8% and 6.5% higher success rate compared to a state-of-the-art CL method and a curriculum designed by human experts.
arXiv Detail & Related papers (2024-09-29T22:54:08Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement
Learning [0.8399688944263843]
Deep reinforcement learning (DRL) is a promising approach to solve complex control tasks by learning policies through interactions with the environment.
Sim-to-real approaches leverage simulations to pretrain DRL policies and then deploy them in the real world.
This work proposes a distributed cloud-edge architecture to train DRL agents in the real world in real-time.
arXiv Detail & Related papers (2022-03-04T10:27:01Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - SurRoL: An Open-source Reinforcement Learning Centered and dVRK
Compatible Platform for Surgical Robot Learning [78.76052604441519]
SurRoL is an RL-centered simulation platform for surgical robot learning compatible with the da Vinci Research Kit (dVRK)
Ten learning-based surgical tasks are built in the platform, which are common in the real autonomous surgical execution.
We evaluate SurRoL using RL algorithms in simulation, provide in-depth analysis, deploy the trained policies on the real dVRK, and show that our SurRoL achieves better transferability in the real world.
arXiv Detail & Related papers (2021-08-30T07:43:47Z) - How to Train Your Robot with Deep Reinforcement Learning; Lessons We've
Learned [111.06812202454364]
We present a number of case studies involving robotic deep RL.
We discuss commonly perceived challenges in deep RL and how they have been addressed in these works.
We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting.
arXiv Detail & Related papers (2021-02-04T22:09:28Z) - Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks [70.56451186797436]
We study how to use meta-reinforcement learning to solve the bulk of the problem in simulation.
We demonstrate our approach by training an agent to successfully perform challenging real-world insertion tasks.
arXiv Detail & Related papers (2020-04-29T18:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.