Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction
- URL: http://arxiv.org/abs/2408.14762v4
- Date: Wed, 23 Oct 2024 09:25:58 GMT
- Title: Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction
- Authors: Mingfei Cai, Yanbo Pang, Yoshihide Sekimoto,
- Abstract summary: Commuting flow prediction is an essential task for municipal operations in the real world.
We develop a heterogeneous graph-based model to generate meaningful region embeddings for predicting different types of inter-level OD flows.
Our proposed model outperforms existing models in terms of a uniform urban structure.
- Score: 1.5156879440024378
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Commuting flow prediction is an essential task for municipal operations in the real world. Previous studies have revealed that it is feasible to estimate the commuting origin-destination (OD) demand within a city using multiple auxiliary data. However, most existing methods are not suitable to deal with a similar task at a large scale, namely within a prefecture or the whole nation, owing to the increased number of geographical units that need to be maintained. In addition, region representation learning is a universal approach for gaining urban knowledge for diverse metropolitan downstream tasks. Although many researchers have developed comprehensive frameworks to describe urban units from multi-source data, they have not clarified the relationship between the selected geographical elements. Furthermore, metropolitan areas naturally preserve ranked structures, like cities and their inclusive districts, which makes elucidating relations between cross-level urban units necessary. Therefore, we develop a heterogeneous graph-based model to generate meaningful region embeddings at multiple spatial resolutions for predicting different types of inter-level OD flows. To demonstrate the effectiveness of the proposed method, extensive experiments were conducted using real-world aggregated mobile phone datasets collected from Shizuoka Prefecture, Japan. The results indicate that our proposed model outperforms existing models in terms of a uniform urban structure. We extend the understanding of predicted results using reasonable explanations to enhance the credibility of the model.
Related papers
- Urban Region Pre-training and Prompting: A Graph-based Approach [10.375941950028938]
We propose a $textbfG$raph-based $textbfU$rban $textbfR$egion $textbfP$re-training and $textbfP$rompting framework for region representation learning.
arXiv Detail & Related papers (2024-08-12T05:00:23Z) - Fine-Grained Urban Flow Inference with Multi-scale Representation Learning [14.673004628911443]
We propose an effective fine-grained urban flow inference model called UrbanMSR.
It uses self-supervised contrastive learning to obtain dynamic multi-scale representations of neighborhood-level and city-level geographic information.
We validate the performance through extensive experiments on three real-world datasets.
arXiv Detail & Related papers (2024-06-14T04:42:29Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Attentive Graph Enhanced Region Representation Learning [7.4106801792345705]
Representing urban regions accurately and comprehensively is essential for various urban planning and analysis tasks.
We propose the Attentive Graph Enhanced Region Representation Learning (ATGRL) model, which aims to capture comprehensive dependencies from multiple graphs and learn rich semantic representations of urban regions.
arXiv Detail & Related papers (2023-07-06T16:38:43Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities [7.148078723492643]
We propose using a neural embedding model-graph neural network (GNN)- that leverages the heterogeneous features of urban areas.
Using large-scale high-resolution mobility data sets from millions of aggregated and anonymized mobile phone users in 16 metropolitan counties in the United States, we demonstrate that our embeddings encode complex relationships among features related to urban components.
We show that embeddings generated by a model trained on a different county can capture 50% to 60% of the emergent spatial structure in another county.
arXiv Detail & Related papers (2021-10-24T07:13:14Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
Predicting commuting flows based on infrastructure and land-use information is critical for urban planning and public policy development.
Conventional models, such as gravity model, are mainly derived from physics principles and limited by their predictive power in real-world scenarios.
We propose Geo-contextual Multitask Embedding Learner (GMEL), a model that captures the spatial correlations from geographic contextual information for commuting flow prediction.
arXiv Detail & Related papers (2020-05-04T17:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.