Correntropy-Based Improper Likelihood Model for Robust Electrophysiological Source Imaging
- URL: http://arxiv.org/abs/2408.14843v1
- Date: Tue, 27 Aug 2024 07:54:15 GMT
- Title: Correntropy-Based Improper Likelihood Model for Robust Electrophysiological Source Imaging
- Authors: Yuanhao Li, Badong Chen, Zhongxu Hu, Keita Suzuki, Wenjun Bai, Yasuharu Koike, Okito Yamashita,
- Abstract summary: Existing source imaging algorithms utilize the Gaussian assumption for the observation noise to build the likelihood function for Bayesian inference.
The electromagnetic measurements of brain activity are usually affected by miscellaneous artifacts, leading to a potentially non-Gaussian distribution for the observation noise.
We propose a new likelihood model which is robust with respect to non-Gaussian noises.
- Score: 18.298620404141047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian learning provides a unified skeleton to solve the electrophysiological source imaging task. From this perspective, existing source imaging algorithms utilize the Gaussian assumption for the observation noise to build the likelihood function for Bayesian inference. However, the electromagnetic measurements of brain activity are usually affected by miscellaneous artifacts, leading to a potentially non-Gaussian distribution for the observation noise. Hence the conventional Gaussian likelihood model is a suboptimal choice for the real-world source imaging task. In this study, we aim to solve this problem by proposing a new likelihood model which is robust with respect to non-Gaussian noises. Motivated by the robust maximum correntropy criterion, we propose a new improper distribution model concerning the noise assumption. This new noise distribution is leveraged to structure a robust likelihood function and integrated with hierarchical prior distributions to estimate source activities by variational inference. In particular, the score matching is adopted to determine the hyperparameters for the improper likelihood model. A comprehensive performance evaluation is performed to compare the proposed noise assumption to the conventional Gaussian model. Simulation results show that, the proposed method can realize more precise source reconstruction by designing known ground-truth. The real-world dataset also demonstrates the superiority of our new method with the visual perception task. This study provides a new backbone for Bayesian source imaging, which would facilitate its application using real-world noisy brain signal.
Related papers
- Diffusion Gaussian Mixture Audio Denoise [23.760755498636943]
We propose a DiffGMM model, a denoising model based on the diffusion and Gaussian mixture models.
Given a noisy audio signal, we first apply a 1D-U-Net to extract features and train linear layers to estimate parameters for the Gaussian mixture model.
The noisy signal is continuously subtracted from the estimated noise to output clean audio signals.
arXiv Detail & Related papers (2024-06-13T14:18:10Z) - Learning Gaussian Representation for Eye Fixation Prediction [54.88001757991433]
Existing eye fixation prediction methods perform the mapping from input images to the corresponding dense fixation maps generated from raw fixation points.
We introduce Gaussian Representation for eye fixation modeling.
We design our framework upon some lightweight backbones to achieve real-time fixation prediction.
arXiv Detail & Related papers (2024-03-21T20:28:22Z) - Robust Estimation of Causal Heteroscedastic Noise Models [7.568978862189266]
Student's $t$-distribution is known for its robustness in accounting for sampling variability with smaller sample sizes and extreme values without significantly altering the overall distribution shape.
Our empirical evaluations demonstrate that our estimators are more robust and achieve better overall performance across synthetic and real benchmarks.
arXiv Detail & Related papers (2023-12-15T02:26:35Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Generative models and Bayesian inversion using Laplace approximation [0.3670422696827525]
Recently, inverse problems were solved using generative models as highly informative priors.
We show that derived Bayes estimates are consistent, in contrast to the approach employing the low-dimensional manifold of the generative model.
arXiv Detail & Related papers (2022-03-15T10:05:43Z) - Adaptive Multi-View ICA: Estimation of noise levels for optimal
inference [65.94843987207445]
Adaptive multiView ICA (AVICA) is a noisy ICA model where each view is a linear mixture of shared independent sources with additive noise on the sources.
On synthetic data, AVICA yields better sources estimates than other group ICA methods thanks to its explicit MMSE estimator.
On real magnetoencephalograpy (MEG) data, we provide evidence that the decomposition is less sensitive to sampling noise and that the noise variance estimates are biologically plausible.
arXiv Detail & Related papers (2021-02-22T13:10:12Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Statistical Analysis of Signal-Dependent Noise: Application in Blind
Localization of Image Splicing Forgery [20.533239616846874]
In this work, we apply signal-dependent noise (SDN) to splicing localization tasks.
By building a maximum a posterior Markov random field (MAP-MRF) framework, we exploit the likelihood of noise to reveal the alien region of spliced objects.
Experimental results demonstrate that our method is effective and provides a comparative localization performance.
arXiv Detail & Related papers (2020-10-30T11:53:53Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - A deep-learning based Bayesian approach to seismic imaging and
uncertainty quantification [0.4588028371034407]
Uncertainty is essential when dealing with ill-conditioned inverse problems.
It is often not possible to formulate a prior distribution that precisely encodes our prior knowledge about the unknown.
We propose to use the functional form of a randomly convolutional neural network as an implicit structured prior.
arXiv Detail & Related papers (2020-01-13T23:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.