論文の概要: Adversarial Manhole: Challenging Monocular Depth Estimation and Semantic Segmentation Models with Patch Attack
- arxiv url: http://arxiv.org/abs/2408.14879v1
- Date: Tue, 27 Aug 2024 08:48:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 14:23:37.101866
- Title: Adversarial Manhole: Challenging Monocular Depth Estimation and Semantic Segmentation Models with Patch Attack
- Title(参考訳): 逆マンホール: パッチアタックを伴う単眼深度推定と意味的セグメンテーションモデル
- Authors: Naufal Suryanto, Andro Aprila Adiputra, Ahmada Yusril Kadiptya, Yongsu Kim, Howon Kim,
- Abstract要約: 本稿では,マンホールカバーを模倣してMDEモデルとSSモデルを偽装する実用的パッチを用いた,新たな逆襲攻撃を提案する。
我々はDepth Planar Mappingを使ってこれらのパッチを道路表面に正確に配置し、攻撃の有効性を高める。
以上の結果から,MDEでは相対誤差が43%,SSでは96%であった。
- 参考スコア(独自算出の注目度): 1.4272256806865107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular depth estimation (MDE) and semantic segmentation (SS) are crucial for the navigation and environmental interpretation of many autonomous driving systems. However, their vulnerability to practical adversarial attacks is a significant concern. This paper presents a novel adversarial attack using practical patches that mimic manhole covers to deceive MDE and SS models. The goal is to cause these systems to misinterpret scenes, leading to false detections of near obstacles or non-passable objects. We use Depth Planar Mapping to precisely position these patches on road surfaces, enhancing the attack's effectiveness. Our experiments show that these adversarial patches cause a 43% relative error in MDE and achieve a 96% attack success rate in SS. These patches create affected error regions over twice their size in MDE and approximately equal to their size in SS. Our studies also confirm the patch's effectiveness in physical simulations, the adaptability of the patches across different target models, and the effectiveness of our proposed modules, highlighting their practical implications.
- Abstract(参考訳): 単眼深度推定(MDE)とセマンティックセグメンテーション(SS)は、多くの自律運転システムのナビゲーションと環境解釈に不可欠である。
しかし、実際の敵攻撃に対するその脆弱性は重大な懸念事項である。
本稿では,マンホールカバーを模倣してMDEモデルとSSモデルを偽装する実用的パッチを用いた,新たな逆襲攻撃を提案する。
目的は、これらのシステムにシーンを誤解釈させ、近くの障害物や通過不能な物体を誤検知させることである。
我々はDepth Planar Mappingを使ってこれらのパッチを道路表面に正確に配置し、攻撃の有効性を高める。
以上の結果から,MDEでは相対誤差が43%,SSでは96%であった。
これらのパッチは、MDEの2倍以上の大きさで、SSの約2倍の大きさのエラー領域を生成する。
また, 本研究は, 物理シミュレーションにおけるパッチの有効性, 異なる対象モデルに対するパッチの適用性, 提案モジュールの有効性を検証し, その実用的意義を明らかにした。
関連論文リスト
- Physical Adversarial Attack on Monocular Depth Estimation via Shape-Varying Patches [8.544722337960359]
形状変化パッチによる攻撃(ASP)というフレームワークを用いて,物理に基づく単眼深度推定に対する逆攻撃を提案する。
攻撃の柔軟性と効率を高めるために、四角形、長方形、円形のマスクを含む様々なマスク形状を導入する。
実験結果から, 目標車両の平均深度誤差は18mであり, パッチ面積は1/9であり, 目標車両の98%以上に影響を与えることがわかった。
論文 参考訳(メタデータ) (2024-07-24T14:29:05Z) - SSAP: A Shape-Sensitive Adversarial Patch for Comprehensive Disruption of Monocular Depth Estimation in Autonomous Navigation Applications [7.631454773779265]
SSAP(Shape-Sensitive Adrial Patch)は,自律ナビゲーションアプリケーションにおける単眼深度推定(MDE)を阻害する新しい手法である。
我々のパッチは、推定距離を歪ませたり、システムの観点から消える物体の錯覚を作り出すことによって、2つの異なる方法でMDEを選択的に弱体化させる。
提案手法は平均深度推定誤差が0.5を超え,CNNベースMDEモデルの目標領域の99%に影響を及ぼす。
論文 参考訳(メタデータ) (2024-03-18T07:01:21Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
敵攻撃は入力データに微妙な摂動をもたらす可能性がある。
最近の攻撃方法は比較的高い攻撃成功率(ASR)を達成することができる。
そこで本研究では,分散ロラをベースとしたDALA(Adversarial Attack)手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T23:43:47Z) - Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
軽快でプラガブルで効果的な PLM 防御である MDP を,少人数の学習者として提唱する。
我々は,MDPが攻撃の有効性と回避性の両方を選択できる興味深いジレンマを発生させることを解析的に示す。
論文 参考訳(メタデータ) (2023-09-23T04:41:55Z) - SAAM: Stealthy Adversarial Attack on Monocular Depth Estimation [5.476763798688862]
我々は、アンダーラインMDE (SAAM) 上での新たなアンダーラインStealthy UnderlineAdversarial UnderlineAttacksを提案する。
推定距離を破損させたり、物体を周囲にシームレスに混入させたりすることで、MDEを損なう。
我々はこの研究が、エッジデバイス上でのMDEの文脈における敵攻撃の脅威に光を当てていると信じている。
論文 参考訳(メタデータ) (2023-08-06T13:29:42Z) - APARATE: Adaptive Adversarial Patch for CNN-based Monocular Depth Estimation for Autonomous Navigation [8.187375378049353]
単眼深度推定(MDE)は、革新的なアーキテクチャ、すなわち畳み込みニューラルネットワーク(CNN)とトランスフォーマーの統合により、性能が大幅に向上した。
これらのモデルの敵攻撃に対する感受性は、特に安全性とセキュリティが最優先の領域において注目に値する関心事となっている。
この懸念は、正確なシーン理解が重要である自律運転やロボットナビゲーションといったアプリケーションにおいて重要な役割を担っているため、MDEにとって特に重みとなる。
論文 参考訳(メタデータ) (2023-03-02T15:31:53Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Physical Attack on Monocular Depth Estimation with Optimal Adversarial
Patches [18.58673451901394]
我々は学習に基づく単眼深度推定(MDE)に対する攻撃を開発する。
我々は,攻撃のステルス性と有効性を,オブジェクト指向の対角設計,感度領域の局所化,自然スタイルのカモフラージュとバランスさせる。
実験結果から,本手法は,異なる対象オブジェクトやモデルに対して,ステルス性,有効,堅牢な逆パッチを生成できることが示唆された。
論文 参考訳(メタデータ) (2022-07-11T08:59:09Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
現実世界の敵対的な例(通常はパッチの形で)の存在は、安全クリティカルなコンピュータビジョンタスクにおけるディープラーニングモデルの使用に深刻な脅威をもたらす。
本稿では,異なる種類の対立パッチを攻撃した場合のセマンティックセグメンテーションモデルのロバスト性を評価する。
画素の誤分類を誘導する攻撃者の能力を改善するために, 新たな損失関数を提案する。
論文 参考訳(メタデータ) (2022-01-05T22:33:43Z) - Segment and Complete: Defending Object Detectors against Adversarial
Patch Attacks with Robust Patch Detection [142.24869736769432]
敵のパッチ攻撃は最先端の物体検出器に深刻な脅威をもたらす。
パッチ攻撃に対して物体検出器を防御するフレームワークであるSegment and Complete Defense (SAC)を提案する。
SACは、物理的パッチ攻撃の標的攻撃成功率を著しく低減できることを示す。
論文 参考訳(メタデータ) (2021-12-08T19:18:48Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。