Turbine location-aware multi-decadal wind power predictions for Germany using CMIP6
- URL: http://arxiv.org/abs/2408.14889v2
- Date: Fri, 25 Oct 2024 12:50:18 GMT
- Title: Turbine location-aware multi-decadal wind power predictions for Germany using CMIP6
- Authors: Nina Effenberger, Nicole Ludwig,
- Abstract summary: Climate models can provide insights and should be used for long-term power planning.
In this work we use Gaussian processes to predict power output given wind speeds from a global climate model.
Our results indicate that wind energy will likely remain a reliable energy source in the future.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change will impact wind and therefore wind power generation with largely unknown effect and magnitude. Climate models can provide insights and should be used for long-term power planning. In this work we use Gaussian processes to predict power output given wind speeds from a global climate model and compare the aggregated predictions to actual power generation. Analyzing past climate model data supports the use of CMIP6 climate model data for multi-decadal wind power predictions and highlights the importance of being location-aware. Our predictions up to 2050 reveal only minor changes in yearly wind power generation. We find that wind power projections of the two in-between climate scenarios SSP2-4.5 and SSP3-7.0 closely align with actual wind power generation between 2015 and 2023. Our analysis also reveals larger uncertainty associated with Germany's coastal areas in the North as compared to Germany's South, motivating wind power expansion in regions where future wind is likely more reliable. Overall, our results indicate that wind energy will likely remain a reliable energy source in the future.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - SDWPF: A Dataset for Spatial Dynamic Wind Power Forecasting Challenge at
KDD Cup 2022 [42.72560292756442]
We present a unique Spatial Dynamic Wind Power Forecasting dataset: SDWPF.
This dataset includes the spatial distribution of wind turbines, as well as the dynamic context factors.
We use this dataset to launch the Baidu KDD Cup 2022 to examine the limit of current WPF solutions.
arXiv Detail & Related papers (2022-08-08T18:38:45Z) - Uncertainty Set Prediction of Aggregated Wind Power Generation based on
Bayesian LSTM and Spatio-Temporal Analysis [42.68418705495523]
This paper focuses on the uncertainty set prediction of the aggregated generation of geographically distributed wind farms.
A Spatio-temporal model is proposed to learn the dynamic features from partial observation in near-surface wind fields of neighboring wind farms.
Numerical testing results based on the actual data with 6 wind farms in northwest China show that the uncertainty set of aggregated wind generation is less volatile than that of a single wind farm.
arXiv Detail & Related papers (2021-10-07T11:57:16Z) - Deep Spatio-Temporal Wind Power Forecasting [4.219722822139438]
We develop a deep learning approach based on encoder-decoder structure.
Our model forecasts wind power generated by a wind turbine using its spatial location relative to other turbines and historical wind speed data.
arXiv Detail & Related papers (2021-09-29T16:26:10Z) - Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks [0.0]
Using optimized machine learning algorithms, it is possible to find obscured patterns in the observations and obtain meaningful data.
The paper explores the use of both parametric and the non-parametric models for calculating wind power prediction using power curves.
arXiv Detail & Related papers (2021-08-22T17:46:36Z) - Spatio-temporal estimation of wind speed and wind power using machine
learning: predictions, uncertainty and technical potential [0.0]
The wind power estimate presented here represents an important input for planners to support the design of energy systems with increased wind power generation.
The methodology is applied to the study of hourly wind power potential on a grid of $250times 250$ m$2$ for turbines of 100 meters hub height in Switzerland.
arXiv Detail & Related papers (2021-07-29T09:52:36Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - Application of ERA5 and MENA simulations to predict offshore wind energy
potential [1.4699455652461724]
This study explores wind energy resources in different locations through the Gulf of Oman.
Results show that selected locations have a suitable potential for wind power turbine plan and constructions.
arXiv Detail & Related papers (2020-02-24T00:25:29Z) - Modeling Climate Change Impact on Wind Power Resources Using Adaptive
Neuro-Fuzzy Inference System [1.293050392312921]
Middle and northern parts of the Caspian Sea are placed with the highest values of wind power.
Results of study indicated that the middle and northern parts of the Caspian Sea are placed with the highest values of wind power.
arXiv Detail & Related papers (2020-01-09T17:35:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.