Uncertainty Set Prediction of Aggregated Wind Power Generation based on
Bayesian LSTM and Spatio-Temporal Analysis
- URL: http://arxiv.org/abs/2110.03358v1
- Date: Thu, 7 Oct 2021 11:57:16 GMT
- Title: Uncertainty Set Prediction of Aggregated Wind Power Generation based on
Bayesian LSTM and Spatio-Temporal Analysis
- Authors: Xiaopeng Li, Jiang Wu, Zhanbo Xu, Kun Liu, Jun Yu, Xiaohong Guan
- Abstract summary: This paper focuses on the uncertainty set prediction of the aggregated generation of geographically distributed wind farms.
A Spatio-temporal model is proposed to learn the dynamic features from partial observation in near-surface wind fields of neighboring wind farms.
Numerical testing results based on the actual data with 6 wind farms in northwest China show that the uncertainty set of aggregated wind generation is less volatile than that of a single wind farm.
- Score: 42.68418705495523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aggregated stochastic characteristics of geographically distributed wind
generation will provide valuable information for secured and economical system
operation in electricity markets. This paper focuses on the uncertainty set
prediction of the aggregated generation of geographically distributed wind
farms. A Spatio-temporal model is proposed to learn the dynamic features from
partial observation in near-surface wind fields of neighboring wind farms. We
use Bayesian LSTM, a probabilistic prediction model, to obtain the uncertainty
set of the generation in individual wind farms. Then, spatial correlation
between different wind farms is presented to correct the output results.
Numerical testing results based on the actual data with 6 wind farms in
northwest China show that the uncertainty set of aggregated wind generation of
distributed wind farms is less volatile than that of a single wind farm.
Related papers
- Ultra-short-term multi-step wind speed prediction for wind farms based on adaptive noise reduction technology and temporal convolutional network [0.0]
This study proposes a new wind speed prediction model based on data noise reduction technology, temporal convolutional network (TCN), and gated recurrent unit (GRU)
The proposed model was validated on three wind farms in Shandong Province.
arXiv Detail & Related papers (2023-11-27T03:53:19Z) - Asset Bundling for Wind Power Forecasting [15.393565192962482]
This work proposes a Bundle-Predict-Reconcile (BPR) framework that integrates asset bundling, machine learning, and forecast reconciliation techniques.
The BPR framework first learns an intermediate hierarchy level (the bundles), then predicts wind power at the asset, bundle, and fleet level, and finally reconciles all forecasts to ensure consistency.
arXiv Detail & Related papers (2023-09-28T14:56:34Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks [0.0]
Using optimized machine learning algorithms, it is possible to find obscured patterns in the observations and obtain meaningful data.
The paper explores the use of both parametric and the non-parametric models for calculating wind power prediction using power curves.
arXiv Detail & Related papers (2021-08-22T17:46:36Z) - Spatio-temporal estimation of wind speed and wind power using machine
learning: predictions, uncertainty and technical potential [0.0]
The wind power estimate presented here represents an important input for planners to support the design of energy systems with increased wind power generation.
The methodology is applied to the study of hourly wind power potential on a grid of $250times 250$ m$2$ for turbines of 100 meters hub height in Switzerland.
arXiv Detail & Related papers (2021-07-29T09:52:36Z) - Machine Intelligent Techniques for Ramp Event Prediction in Offshore and
Onshore Wind Farms [0.0]
Wind resource assessment for onshore and offshore wind farms aids in accurate forecasting and analyzing nature of ramp events.
A large ramp event in a short time duration is likely to cause damage to the wind farm connected to the utility grid.
arXiv Detail & Related papers (2020-11-28T21:21:42Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.