Non-adiabatic couplings as a stabilization mechanism in long-range Rydberg molecules
- URL: http://arxiv.org/abs/2408.14919v1
- Date: Tue, 27 Aug 2024 09:47:56 GMT
- Title: Non-adiabatic couplings as a stabilization mechanism in long-range Rydberg molecules
- Authors: Aileen A. T. Durst, Milena Simić, Neethu Abraham, Matthew T. Eiles,
- Abstract summary: In alkaline Rydberg molecules, bound vibrational states exist even when these potential wells are disrupted by level repulsion.
By comparing the molecular states calculated within the Born-Oppenheimer approximation, we can assess the effects of non-adiabatic coupling on vibrational energies and lifetimes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-range Rydberg molecules are typically bound in wells formed in their oscillatory potential energy curves. In alkaline Rydberg molecules, bound vibrational states exist even when these potential wells are disrupted by level repulsion from the steep butterfly potential energy curve induced by a scattering shape resonance. The binding in this case is attributed to quantum reflection. However, the rapidly varying regions of the potential energy landscape where quantum reflection occurs often coincide with regions where non-adiabatic coupling becomes significant. By comparing the molecular states calculated within the Born-Oppenheimer approximation, where quantum reflection is the only binding mechanism, with those obtained from the full set of coupled channel equations, we can assess the effects of non-adiabatic coupling on vibrational energies and lifetimes. Our findings show that these couplings can stabilize the molecule by providing an additional barrier which protects the vibrational states from predissociation and non-radiative transitions. There can also be extreme cases where non-adiabatic coupling completely dominates the binding and the molecular lifetimes saturate at the atomic Rydberg lifetime.
Related papers
- Flipping electric dipole in the vibrational wave packet dynamics of
carbon monoxide [0.0]
Recently Rydberg atom-ion bound states have been observed using a high resolution ion microscope.
We investigate whether a similar behavior can also occur for ground state diatomic molecules.
arXiv Detail & Related papers (2024-03-06T21:32:22Z) - Rydberg molecules bound by strong light fields [0.0]
We show that Rydberg macrodimers, weakly bound pairs of Rydberg atoms, can form bound states with the continuum of free motional states.
This is enabled by the unique combination of extraordinarily slow vibrational motion in the molecular state and the optical coupling to a non-interacting continuum.
Our results present an intriguing mechanism to control decoherence and bind multiatomic molecules using strong light-matter interactions.
arXiv Detail & Related papers (2024-01-10T12:51:51Z) - Coherent spin-phonon scattering in facilitated Rydberg lattices [0.0]
We study the dynamics of a spin system using Rydberg atoms in optical tweezer traps.
Rydberg excitations expand ballistically through the lattice.
Spin domain dynamics is sensitive to the coherence properties of the atoms' vibrational state.
arXiv Detail & Related papers (2023-10-31T18:09:47Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - A unified theory of strong coupling Bose polarons: From repulsive
polarons to non-Gaussian many-body bound states [0.0]
We show that the interplay of impurity-induced instability and stabilization by repulsive boson-boson interactions results in a discrete set of metastable many-body bound states.
This work provides a unified theory of attractive and repulsive Bose polarons on the repulsive side of the Feshbach resonance.
arXiv Detail & Related papers (2023-05-01T14:05:11Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Phonon dressing of a facilitated one-dimensional Rydberg lattice gas [0.0]
We study the dynamics of a one-dimensional Rydberg lattice gas under facilitation conditions.
We analytically derive an effective Hamiltonian for the evolution of consecutive clusters of Rydberg excitations.
We show that the interaction between Rydberg excitations and lattice vibrations leads to the emergence of slowly decaying bound states.
arXiv Detail & Related papers (2021-04-22T16:29:56Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.