BOX3D: Lightweight Camera-LiDAR Fusion for 3D Object Detection and Localization
- URL: http://arxiv.org/abs/2408.14941v1
- Date: Tue, 27 Aug 2024 10:26:05 GMT
- Title: BOX3D: Lightweight Camera-LiDAR Fusion for 3D Object Detection and Localization
- Authors: Mario A. V. Saucedo, Nikolaos Stathoulopoulos, Vidya Sumathy, Christoforos Kanellakis, George Nikolakopoulos,
- Abstract summary: This article proposes BOX3D, a novel scheme for localizing objects of interest by fusing the information from RGB camera and 3D LiDAR.
BOX3D is structured around a three-layered architecture, building up from the local perception of the incoming sequential sensor data to the global perception refinement.
Benchmarking results of the proposed novel architecture are showcased in multiple experimental trials on public state-of-the-art large-scale dataset of urban environments.
- Score: 6.029300324532809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection and global localization play a crucial role in robotics, spanning across a great spectrum of applications from autonomous cars to multi-layered 3D Scene Graphs for semantic scene understanding. This article proposes BOX3D, a novel multi-modal and lightweight scheme for localizing objects of interest by fusing the information from RGB camera and 3D LiDAR. BOX3D is structured around a three-layered architecture, building up from the local perception of the incoming sequential sensor data to the global perception refinement that covers for outliers and the general consistency of each object's observation. More specifically, the first layer handles the low-level fusion of camera and LiDAR data for initial 3D bounding box extraction. The second layer converts each LiDAR's scan 3D bounding boxes to the world coordinate frame and applies a spatial pairing and merging mechanism to maintain the uniqueness of objects observed from different viewpoints. Finally, BOX3D integrates the third layer that supervises the consistency of the results on the global map iteratively, using a point-to-voxel comparison for identifying all points in the global map that belong to the object. Benchmarking results of the proposed novel architecture are showcased in multiple experimental trials on public state-of-the-art large-scale dataset of urban environments.
Related papers
- Rooms from Motion: Un-posed Indoor 3D Object Detection as Localization and Mapping [8.332670136772558]
We revisit scene-level 3D object detection as the output of an object-centric framework capable of both localization and mapping.<n>By replacing the standard 2D keypoint-based matcher of structure-from-motion with an object-centric matcher based on image-derived 3D boxes, we estimate metric camera poses, object tracks, and finally produce a global, semantic 3D object map.
arXiv Detail & Related papers (2025-05-29T17:59:45Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - PoIFusion: Multi-Modal 3D Object Detection via Fusion at Points of Interest [65.48057241587398]
PoIFusion is a framework to fuse information of RGB images and LiDAR point clouds at the points of interest (PoIs)
Our approach maintains the view of each modality and obtains multi-modal features by computation-friendly projection and computation.
We conducted extensive experiments on nuScenes and Argoverse2 datasets to evaluate our approach.
arXiv Detail & Related papers (2024-03-14T09:28:12Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - SRCN3D: Sparse R-CNN 3D for Compact Convolutional Multi-View 3D Object
Detection and Tracking [12.285423418301683]
This paper proposes Sparse R-CNN 3D (SRCN3D), a novel two-stage fully-sparse detector that incorporates sparse queries, sparse attention with box-wise sampling, and sparse prediction.
Experiments on nuScenes dataset demonstrate that SRCN3D achieves competitive performance in both 3D object detection and multi-object tracking tasks.
arXiv Detail & Related papers (2022-06-29T07:58:39Z) - Graph-DETR3D: Rethinking Overlapping Regions for Multi-View 3D Object
Detection [17.526914782562528]
We propose Graph-DETR3D to automatically aggregate multi-view imagery information through graph structure learning (GSL)
Our best model achieves 49.5 NDS on the nuScenes test leaderboard, achieving new state-of-the-art in comparison with various published image-view 3D object detectors.
arXiv Detail & Related papers (2022-04-25T12:10:34Z) - A Versatile Multi-View Framework for LiDAR-based 3D Object Detection
with Guidance from Panoptic Segmentation [9.513467995188634]
3D object detection using LiDAR data is an indispensable component for autonomous driving systems.
We propose a novel multi-task framework that jointly performs 3D object detection and panoptic segmentation.
arXiv Detail & Related papers (2022-03-04T04:57:05Z) - 3D-MAN: 3D Multi-frame Attention Network for Object Detection [22.291051951077485]
3D-MAN is a 3D multi-frame attention network that effectively aggregates features from multiple perspectives.
We show that 3D-MAN achieves state-of-the-art results compared to published single-frame and multi-frame methods.
arXiv Detail & Related papers (2021-03-30T03:44:22Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
We propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization.
We design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution.
arXiv Detail & Related papers (2020-12-20T18:43:41Z) - BirdNet+: End-to-End 3D Object Detection in LiDAR Bird's Eye View [117.44028458220427]
On-board 3D object detection in autonomous vehicles often relies on geometry information captured by LiDAR devices.
We present a fully end-to-end 3D object detection framework that can infer oriented 3D boxes solely from BEV images.
arXiv Detail & Related papers (2020-03-09T15:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.