論文の概要: ERX: A Fast Real-Time Anomaly Detection Algorithm for Hyperspectral Line Scanning
- arxiv url: http://arxiv.org/abs/2408.14947v4
- Date: Mon, 23 Dec 2024 23:33:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:52:20.349471
- Title: ERX: A Fast Real-Time Anomaly Detection Algorithm for Hyperspectral Line Scanning
- Title(参考訳): ERX:ハイパースペクトル線走査のための高速リアルタイム異常検出アルゴリズム
- Authors: Samuel Garske, Bradley Evans, Christopher Artlett, KC Wong,
- Abstract要約: 本稿では,これらの問題に対処するために,指数移動RXアルゴリズム(ERX)を提案する。
ラインスキャンカメラを使用する際の現実的な課題をよりよく評価するために、3つの大規模で複雑なデータセットが導入されている。
ERXは、最も多くの帯域を持つデータセットの次のベストアルゴリズムよりも9倍高速だった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Detecting unexpected objects (anomalies) in real time has great potential for monitoring, managing, and protecting the environment. Hyperspectral line-scan cameras are a low-cost solution that enhance confidence in anomaly detection over RGB and multispectral imagery. However, existing line-scan algorithms are too slow when using small computers (e.g. those onboard a drone or small satellite), do not adapt to changing scenery, or lack robustness against geometric distortions. This paper introduces the Exponentially moving RX algorithm (ERX) to address these issues, and compares it with four existing RX-based anomaly detection methods for hyperspectral line scanning. Three large and more complex datasets are also introduced to better assess the practical challenges when using line-scan cameras (two hyperspectral and one multispectral). ERX was evaluated using a Jetson Xavier NX edge computing module (6-core CPU, 8GB RAM, 20W power draw), achieving the best combination of speed and detection performance. ERX was 9 times faster than the next-best algorithm on the dataset with the highest number of bands (108 band), with an average speed of 561 lines per second on the Jetson. It achieved a 29.3% AUC improvement over the next-best algorithm on the most challenging dataset, while showing greater adaptability through consistently high AUC scores regardless of the camera's starting location. ERX performed robustly across all datasets, achieving an AUC of 0.941 on a drone-collected hyperspectral line scan dataset without geometric corrections (a 16.9% improvement over existing algorithms). This work enables future research on the detection of anomalous objects in real time, adaptive and automatic threshold selection, and real-time field tests. The datasets and the Python code are openly available at: https://github.com/WiseGamgee/HyperAD, promoting accessibility and future work.
- Abstract(参考訳): 予期せぬオブジェクト(異常)をリアルタイムで検出することは、環境を監視し、管理し、保護する大きな可能性がある。
ハイパースペクトルラインスキャンカメラは、RGBおよびマルチスペクトル画像に対する異常検出の信頼性を高めるための低コストなソリューションである。
しかし、既存のラインスキャンアルゴリズムは、小型コンピュータ(例えばドローンや小型衛星に搭載されているもの)を使用すると遅すぎるため、景色の変化に適応せず、幾何学的歪みに対して堅牢性に欠ける。
本稿では、これらの問題に対処するために、指数移動RXアルゴリズム(ERX)を導入し、高スペクトル線走査のための4つの既存のRXベースの異常検出手法と比較する。
3つの大規模で複雑なデータセットも導入され、ラインスキャンカメラ(2つのハイパースペクトルと1つのマルチスペクトル)を使用する際の現実的な課題をよりよく評価する。
ERXはJetson Xavier NXエッジコンピューティングモジュール(CPU6コア、RAM8GB、パワードロー20W)を用いて評価され、速度と検出性能の最高の組み合わせを実現した。
ERXは、最も多くのバンド(108バンド)を持つデータセットの次のベストアルゴリズムよりも9倍高速で、Jetsonでは平均561行/秒の速度であった。
最も困難なデータセットでは、AUCアルゴリズムよりも29.3%のAUC改善を実現したが、カメラの開始位置に関わらず、常に高いAUCスコアによって適応性が向上した。
ERXは全てのデータセットに対して堅牢に動作し、幾何補正なしでドローンが収集したハイパースペクトル線スキャンデータセットで0.941のAUCを達成した(既存のアルゴリズムよりも16.9%改善)。
本研究は, 異常物体のリアルタイム検出, 適応的および自動しきい値選択, および実時間フィールドテストについて, 今後の研究を可能にする。
データセットとPythonコードは、https://github.com/WiseGamgee/HyperADで公開されている。
関連論文リスト
- Tiny and Efficient Model for the Edge Detection Generalization [0.0]
提案するTiny and Efficient Edge Detector(TEED)は,パラメータが5,8Kドルの軽量畳み込みニューラルネットワークである。
BIPEDデータセットのトレーニングには30分以上かかり、各エポックは5分未満である。
提案したモデルは訓練が容易で,予測されたエッジマップはクオリティが高く,初期のごく一部のエポック内に急速に収束する。
論文 参考訳(メタデータ) (2023-08-12T05:23:36Z) - HPointLoc: Point-based Indoor Place Recognition using Synthetic RGB-D
Images [58.720142291102135]
本稿では,屋内環境における視覚的位置認識能力の探索を目的とした,HPointLocという新しいデータセットを提案する。
データセットは人気のあるHabitatシミュレータに基づいており、独自のセンサーデータとオープンデータセットの両方を使用して屋内シーンを生成することができる。
論文 参考訳(メタデータ) (2022-12-30T12:20:56Z) - Are we ready for beyond-application high-volume data? The Reeds robot
perception benchmark dataset [3.781421673607643]
本稿ではロボット認識アルゴリズムの研究のためにReedsと呼ばれるデータセットを提案する。
このデータセットは、アプリケーション固有のソリューションをテストする環境を提供するのではなく、アルゴリズムに要求されるベンチマーク機会を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-16T23:21:42Z) - Real-Time COVID-19 Diagnosis from X-Ray Images Using Deep CNN and
Extreme Learning Machines Stabilized by Chimp Optimization Algorithm [3.67350413975883]
本稿では,胸部X線画像の分類のための新しい2段階アプローチを提案する。
第1フェーズでは、機能抽出器として機能するディープCNNをトレーニングし、第2フェーズでは、リアルタイム検出にELM(Extreme Learning Machines)を使用する。
提案手法は、他の比較ベンチマークの98.25%と99.11%を、COVID-Xray-5kとCOVIDetectioNetデータセットの最終的な精度で上回る。
論文 参考訳(メタデータ) (2021-05-14T20:04:04Z) - Evolving Deep Convolutional Neural Network by Hybrid Sine-Cosine and
Extreme Learning Machine for Real-time COVID19 Diagnosis from X-Ray Images [0.5249805590164902]
ディープ・コンボリューショナル・ネットワーク(CNN)は、COVID-19陽性症例の診断に応用できるツールとみなすことができる。
本稿では,最後の完全接続層ではなく,ELM(Extreme Learning Machine)を用いることを提案する。
提案手法は、COVID-Xray-5kデータセットで98.83%の最終的な精度で比較ベンチマークを上回っている。
論文 参考訳(メタデータ) (2021-05-14T19:40:16Z) - Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection [99.16162624992424]
Voxel R-CNNというシンプルで効果的なVoxelベースのフレームワークを考案しました。
2段階のアプローチでボクセルの特徴をフル活用することにより,最先端の点ベースモデルと同等の精度で検出できる。
その結果、Voxel R-CNNは、NVIDIA 2080 Ti GPU上での25 FPSの速度で、リアルタイムフレーム処理速度を維持しながら、より高い検出精度を提供する。
論文 参考訳(メタデータ) (2020-12-31T17:02:46Z) - Efficient Nonlinear RX Anomaly Detectors [7.762712532657168]
異常検出のための標準カーネルReed-Xiaoli(RX)の効率向上のための2種類の手法を提案する。
その結果,提案手法は計算コストが低く,標準カーネルrxアルゴリズムと同様の性能(性能)を持つことがわかった。
論文 参考訳(メタデータ) (2020-12-07T21:57:54Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - DR-SPAAM: A Spatial-Attention and Auto-regressive Model for Person
Detection in 2D Range Data [81.06749792332641]
本研究では,異なるタイミングで得られたスキャンを組み合わせ,代替戦略を用いた人物検出ネットワークを提案する。
DR-SPAAMは、バックボーンネットワークから中間機能をテンプレートとして保持し、新しいスキャンが利用可能になったときにテンプレートをリカレントに更新する。
DROWデータセットでは,提案手法は既存の最先端技術よりも約4倍高速である。
論文 参考訳(メタデータ) (2020-04-29T11:01:44Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
本研究では,エッジとサリエンシマップをマージして,サリエンシマップの性能を向上させる手法を開発した。
これにより、DUT-OMRONデータセットの少なくとも3.4倍の平均的な改善により、エッジ(SEE)を使用したサリエンシ向上が提案された。
SEEアルゴリズムは前処理のためのSEE-Preと後処理のためのSEE-Postの2つの部分に分けられる。
論文 参考訳(メタデータ) (2020-02-11T14:04:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。