論文の概要: Mamba2MIL: State Space Duality Based Multiple Instance Learning for Computational Pathology
- arxiv url: http://arxiv.org/abs/2408.15032v1
- Date: Tue, 27 Aug 2024 13:01:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 13:53:43.170411
- Title: Mamba2MIL: State Space Duality Based Multiple Instance Learning for Computational Pathology
- Title(参考訳): Mamba2MIL:計算病理のための状態空間双対に基づく多重インスタンス学習
- Authors: Yuqi Zhang, Xiaoqian Zhang, Jiakai Wang, Yuancheng Yang, Taiying Peng, Chao Tong,
- Abstract要約: 本稿では,Mamba2MILと呼ばれる新しいマルチインスタンス学習フレームワークを提案する。
Mamba2MILは順序関係と順序に依存しない特徴を利用しており、配列情報の最適部分の利用をもたらす。
私たちは、複数のデータセットにまたがって広範な実験を行い、ほぼすべてのパフォーマンス指標の改善を実現しています。
- 参考スコア(独自算出の注目度): 17.329498427735565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational pathology (CPath) has significantly advanced the clinical practice of pathology. Despite the progress made, Multiple Instance Learning (MIL), a promising paradigm within CPath, continues to face challenges, particularly related to incomplete information utilization. Existing frameworks, such as those based on Convolutional Neural Networks (CNNs), attention, and selective scan space state sequential model (SSM), lack sufficient flexibility and scalability in fusing diverse features, and cannot effectively fuse diverse features. Additionally, current approaches do not adequately exploit order-related and order-independent features, resulting in suboptimal utilization of sequence information. To address these limitations, we propose a novel MIL framework called Mamba2MIL. Our framework utilizes the state space duality model (SSD) to model long sequences of patches of whole slide images (WSIs), which, combined with weighted feature selection, supports the fusion processing of more branching features and can be extended according to specific application needs. Moreover, we introduce a sequence transformation method tailored to varying WSI sizes, which enhances sequence-independent features while preserving local sequence information, thereby improving sequence information utilization. Extensive experiments demonstrate that Mamba2MIL surpasses state-of-the-art MIL methods. We conducted extensive experiments across multiple datasets, achieving improvements in nearly all performance metrics. Specifically, on the NSCLC dataset, Mamba2MIL achieves a binary tumor classification AUC of 0.9533 and an accuracy of 0.8794. On the BRACS dataset, it achieves a multiclass classification AUC of 0.7986 and an accuracy of 0.4981. The code is available at https://github.com/YuqiZhang-Buaa/Mamba2MIL.
- Abstract(参考訳): CPath(Computational pathology)は,病理の臨床的実践を著しく進歩させてきた。
進歩にもかかわらず、CPath内の有望なパラダイムであるMultiple Instance Learning(MIL)は、特に不完全な情報利用に関する課題に直面し続けている。
既存のフレームワークとしては、畳み込みニューラルネットワーク(CNN)、注意、選択スキャニング空間状態シーケンシャルモデル(SSM)などがあり、多様な機能を融合する際に十分な柔軟性とスケーラビリティが欠如しており、多様な機能を効果的に融合することはできない。
さらに、現在のアプローチでは順序関係や順序に依存しない特徴を適切に利用していないため、シーケンス情報の準最適利用が期待できる。
これらの制約に対処するため,Mamba2MILと呼ばれる新しいMILフレームワークを提案する。
我々のフレームワークは、ステートスペース双対モデル(SSD)を用いて、スライド画像全体(WSI)のパッチの長いシーケンスをモデル化し、重み付けされた特徴選択と組み合わせ、より分岐した特徴の融合処理をサポートし、特定のアプリケーションニーズに応じて拡張することができる。
さらに、各WSIサイズに合わせて調整されたシーケンス変換手法を導入し、局所的なシーケンス情報を保存しながら、シーケンスに依存しない特徴を向上し、シーケンス情報の利用性を向上させる。
大規模な実験により、Mamba2MILは最先端のMIL法を超えることが示された。
私たちは、複数のデータセットにわたる広範な実験を行い、ほぼすべてのパフォーマンス指標を改善しました。
具体的には、NSCLCデータセット上で、Mamba2MIL はバイナリ腫瘍分類 AUC の 0.9533 と精度 0.8794 を達成している。
BRACSデータセットでは、AUCは0.7986、精度は0.4981である。
コードはhttps://github.com/YuqiZhang-Buaa/Mamba2MILで入手できる。
関連論文リスト
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
継続的学習は、AIモデルに時間とともに一連のタスクを学習する能力を持たせることを目的としている。
ステートスペースモデル(SSM)はコンピュータビジョンにおいて顕著な成功を収めた。
大規模マンバ基礎モデルのコアSSMを連続的に微調整するフレームワークであるMamba-CLを紹介する。
論文 参考訳(メタデータ) (2024-11-23T06:36:16Z) - MSVM-UNet: Multi-Scale Vision Mamba UNet for Medical Image Segmentation [3.64388407705261]
医用画像分割のためのマルチスケールビジョンマンバUNetモデルMSVM-UNetを提案する。
具体的には、VSSブロックにマルチスケールの畳み込みを導入することで、VMambaエンコーダの階層的特徴から、より効果的にマルチスケールの特徴表現をキャプチャし、集約することができる。
論文 参考訳(メタデータ) (2024-08-25T06:20:28Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model [66.35608254724566]
状態空間モデル(SSM)は、二次的複雑性を伴う長距離依存のモデリングにおいて効果的な性能を示した。
しかし、純粋なSSMベースのモデルは、コンピュータビジョンタスクにおける安定性と最適性能の達成に関連する課題に直面している。
本稿では,コンピュータビジョンのためのSSMベースのモデルをスケールする上での課題,特に大規模モデルの不安定性と非効率性について論じる。
論文 参考訳(メタデータ) (2024-07-18T17:59:58Z) - MambaMIL: Enhancing Long Sequence Modeling with Sequence Reordering in
Computational Pathology [10.933433327636918]
MIL(Multiple Instance Learning)は、WSI(Whole Slide Images)内の識別的特徴表現を計算病理学で抽出する主要なパラダイムとして登場した。
本稿では,線形複雑度を持つ長周期モデリングのために,Selective Scan Space State Sequential Model(Mamba)をMIL(Multiple Instance Learning)に組み込む。
提案するフレームワークは,最先端のMIL手法に対して良好に機能する。
論文 参考訳(メタデータ) (2024-03-11T15:17:25Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
本稿では,WSI分析のためのフレームワークMamMILを提案する。
私たちは各WSIを非指向グラフとして表現します。
マンバが1次元シーケンスしか処理できない問題に対処するために、トポロジ対応の走査機構を提案する。
論文 参考訳(メタデータ) (2024-03-08T09:02:13Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Dual-Query Multiple Instance Learning for Dynamic Meta-Embedding based
Tumor Classification [5.121989578393729]
全スライド画像(WSI)の評価は、がんの診断と治療計画において困難かつ重要なステップである。
粗粒度のラベルは容易にアクセスでき、WSI分類がマルチインスタンス学習(MIL)の理想的なユースケースとなる。
埋め込み型Dual-Query MILパイプライン(DQ-MIL)を提案する。
論文 参考訳(メタデータ) (2023-07-14T17:06:49Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - TransMIL: Transformer based Correlated Multiple Instance Learning for
Whole Slide Image Classication [38.58585442160062]
マルチプル・インスタンス・ラーニング(MIL)は、スライド画像全体(WSI)に基づく病理診断において、弱い教師付き分類を解決する強力なツールである。
我々は、相関MILと呼ばれる新しいフレームワークを提案し、収束の証明を提供した。
我々は3つの異なる計算病理問題に対する様々な実験を行い、最先端の手法と比較してより優れた性能と高速な収束を実現した。
論文 参考訳(メタデータ) (2021-06-02T02:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。