論文の概要: NoteLLM-2: Multimodal Large Representation Models for Recommendation
- arxiv url: http://arxiv.org/abs/2405.16789v2
- Date: Tue, 21 Jan 2025 15:40:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:14:27.862808
- Title: NoteLLM-2: Multimodal Large Representation Models for Recommendation
- Title(参考訳): NoteLLM-2:レコメンデーションのためのマルチモーダル大規模表現モデル
- Authors: Chao Zhang, Haoxin Zhang, Shiwei Wu, Di Wu, Tong Xu, Xiangyu Zhao, Yan Gao, Yao Hu, Enhong Chen,
- Abstract要約: 大規模言語モデル(LLM)は、テキスト理解や埋め込みタスクにおいて、例外的な習熟度を示している。
マルチモーダル表現のポテンシャル、特にアイテムツーイテム(I2I)レコメンデーションについては、未解明のままである。
本稿では,既存のLLMと視覚エンコーダの統合をカスタマイズし,効率的なマルチモーダル表現を実現するエンド・ツー・エンドのファインチューニング手法を提案する。
- 参考スコア(独自算出の注目度): 71.87790090964734
- License:
- Abstract: Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks. However, their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored. While leveraging existing Multimodal Large Language Models (MLLMs) for such tasks is promising, challenges arise due to their delayed release compared to corresponding LLMs and the inefficiency in representation tasks. To address these issues, we propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation. Preliminary experiments revealed that fine-tuned LLMs often neglect image content. To counteract this, we propose NoteLLM-2, a novel framework that enhances visual information. Specifically, we propose two approaches: first, a prompt-based method that segregates visual and textual content, employing a multimodal In-Context Learning strategy to balance focus across modalities; second, a late fusion technique that directly integrates visual information into the final representations. Extensive experiments, both online and offline, demonstrate the effectiveness of our approach. Code is available at https://github.com/Applied-Machine-Learning-Lab/NoteLLM.
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキスト理解や埋め込みタスクにおいて、例外的な習熟度を示している。
しかし、特にアイテム・ツー・イテム(I2I)レコメンデーションにおけるマルチモーダル表現の可能性はいまだ検討されていない。
このようなタスクに既存のMultimodal Large Language Models (MLLM)を活用することは有望であるが、対応するLLMと比べてリリースが遅れ、表現タスクの非効率さが問題となる。
これらの問題に対処するために,既存のLCMと視覚エンコーダの統合をカスタマイズし,効率的なマルチモーダル表現を実現するエンド・ツー・エンドのファインチューニング手法を提案する。
予備実験により、微調整LDMは画像内容を無視していることが判明した。
これに対抗するために,視覚情報を強化する新しいフレームワークであるNoteLLM-2を提案する。
具体的には、まず、視覚的コンテンツとテキスト的コンテンツを分離するプロンプトベースの手法を提案し、マルチモーダルなインコンテクスト学習戦略を用いて、モダリティ間の焦点のバランスを保ち、次に、視覚情報を最終表現に直接統合するレイトフュージョン手法を提案する。
オンラインとオフラインの両方で大規模な実験が、我々のアプローチの有効性を実証しています。
コードはhttps://github.com/Applied-Machine-Learning-Lab/NoteLLMで入手できる。
関連論文リスト
- Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
タスク選好最適化(TPO)は、典型的なきめ細かい視覚的タスクから派生した微分可能なタスク選好を利用する新しい手法である。
トレーニング中にリッチなビジュアルラベルを活用することで、TPOはMLLMのマルチモーダル能力とタスク固有のパフォーマンスを大幅に向上させる。
VideoChatとLLaVAによるこのアプローチのインスタンス化は、ベースラインモデルと比較して、総合的に14.6%のマルチモーダル性能の向上を示している。
論文 参考訳(メタデータ) (2024-12-26T18:56:05Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
MEL(Multimodal Entities Linking)は、ウィキペディアのようなマルチモーダル知識ベースの参照エンティティに、多モーダルコンテキスト内で曖昧な言及をリンクすることを目的とした重要なタスクである。
既存の方法はMELタスクを過度に複雑にし、視覚的意味情報を見渡す。
大規模言語モデルを用いたマルチモーダル・エンティティ・リンクタスクを処理するための新しいパラダイムを確立する統一フレームワークUniMELを提案する。
論文 参考訳(メタデータ) (2024-07-23T03:58:08Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
Bundle-MLLMは,大規模言語モデル(LLM)をハイブリットアイテムトークン化アプローチにより微調整する新しいフレームワークである。
具体的には、テキスト、メディア、およびリレーショナルデータを統一トークン化に統合し、テキストトークンと非テキストトークンを区別するソフトな分離トークンを導入する。
1)バンドルパターンを学習し,2)製品バンドル固有のマルチモーダルセマンティック理解の強化を行う。
論文 参考訳(メタデータ) (2024-07-16T13:30:14Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
LLMを事前訓練された視覚モデルに組み込んだマルチモーダル大規模言語モデル(MLLM)は、近年、多様な視覚言語タスクにまたがる印象的なパフォーマンスを実証している。
しかし、複数の画像を含む文脈を理解するには不十分である。
本稿では,2つのフェーズ・パラダイムであるブラウズ・アンド・集中型を提案し,より深いマルチモーダルコンテキスト融合を実現する。
論文 参考訳(メタデータ) (2024-02-19T14:59:07Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVAは、MLLMの知覚能力を改善するためにピクセル、地域、グローバル機能を統合する革新的な統合マルチタスクフレームワークである。
この研究は、277Kサンプルからなるマスクベースの新しいマルチタスクデータセットに貢献し、MLLMの微粒化知覚能力に挑戦し評価する。
論文 参考訳(メタデータ) (2023-11-09T13:18:27Z) - D$^2$TV: Dual Knowledge Distillation and Target-oriented Vision Modeling
for Many-to-Many Multimodal Summarization [113.72253589338472]
many-to-many multimodal summarization (M$3$S) タスクは、どんな言語でも文書入力と対応する画像シーケンスで要約を生成することを目的としている。
本稿では,M$3$Sタスクのための二重知識蒸留と目標指向視覚モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-22T06:47:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。