Causal Rule Forest: Toward Interpretable and Precise Treatment Effect Estimation
- URL: http://arxiv.org/abs/2408.15055v1
- Date: Tue, 27 Aug 2024 13:32:31 GMT
- Title: Causal Rule Forest: Toward Interpretable and Precise Treatment Effect Estimation
- Authors: Chan Hsu, Jun-Ting Wu, Yihuang Kang,
- Abstract summary: Causal Rule Forest (CRF) is a novel approach to learning hidden patterns from data and transforming the patterns into interpretable multi-level Boolean rules.
By training the other interpretable causal inference models with data representation learned by CRF, we can reduce the predictive errors of these models in estimating Heterogeneous Treatment Effects (HTE) and Conditional Average Treatment Effects (CATE)
Our experiments underscore the potential of CRF to advance personalized interventions and policies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding and inferencing Heterogeneous Treatment Effects (HTE) and Conditional Average Treatment Effects (CATE) are vital for developing personalized treatment recommendations. Many state-of-the-art approaches achieve inspiring performance in estimating HTE on benchmark datasets or simulation studies. However, the indirect predicting manner and complex model architecture reduce the interpretability of these approaches. To mitigate the gap between predictive performance and heterogeneity interpretability, we introduce the Causal Rule Forest (CRF), a novel approach to learning hidden patterns from data and transforming the patterns into interpretable multi-level Boolean rules. By training the other interpretable causal inference models with data representation learned by CRF, we can reduce the predictive errors of these models in estimating HTE and CATE, while keeping their interpretability for identifying subgroups that a treatment is more effective. Our experiments underscore the potential of CRF to advance personalized interventions and policies, paving the way for future research to enhance its scalability and application across complex causal inference challenges.
Related papers
- Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions.
By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem.
We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks.
arXiv Detail & Related papers (2024-10-17T03:08:28Z) - Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
We present an inference framework for estimating regression coefficients in conditional mean models.
We develop an augmented inverse probability weighted (AIPW) method, employing regularized estimators for both propensity score (PS) and outcome regression (OR) models.
Our theoretical findings are verified through extensive simulation studies and a real-world data application.
arXiv Detail & Related papers (2024-06-20T00:34:54Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
Causal effect estimation aims at estimating the Average Treatment Effect as well as the Conditional Average Treatment Effect of a treatment to an outcome from the available data.
We propose a new causal inference model, named C-XGBoost, for the prediction of potential outcomes.
arXiv Detail & Related papers (2024-03-31T17:43:37Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - From Causal Pairs to Causal Graphs [1.5469452301122175]
Causal structure learning from observational data remains a non-trivial task.
Motivated by the Cause-Effect Pair' NIPS 2013 Workshop on Causality Challenge, we take a different approach and generate a probability distribution over all possible graphs.
The goal of the paper is to propose new methods based on this probabilistic information and compare their performance with traditional and state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-08T15:28:55Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
We introduce a novel method with a variable decorrelation regularizer to handle both linear and nonlinear confounding.
We employ association rules as new representations using association rule mining based on the original features to increase model interpretability.
arXiv Detail & Related papers (2022-09-29T17:44:14Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.