Geometric Artifact Correction for Symmetric Multi-Linear Trajectory CT: Theory, Method, and Generalization
- URL: http://arxiv.org/abs/2408.15069v1
- Date: Tue, 27 Aug 2024 13:56:48 GMT
- Title: Geometric Artifact Correction for Symmetric Multi-Linear Trajectory CT: Theory, Method, and Generalization
- Authors: Zhisheng Wang, Yanxu Sun, Shangyu Li, Legeng Lin, Shunli Wang, Junning Cui,
- Abstract summary: The existing calibration method for CT is both crude and inefficient.
In this paper, we comprehensively and efficiently address the challenging geometric artifacts in CT.
We also demonstrate significant generalization to common rotated CT and a variant of CT.
- Score: 3.343129011758024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For extending CT field-of-view to perform non-destructive testing, the Symmetric Multi-Linear trajectory Computed Tomography (SMLCT) has been developed as a successful example of non-standard CT scanning modes. However, inevitable geometric errors can cause severe artifacts in the reconstructed images. The existing calibration method for SMLCT is both crude and inefficient. It involves reconstructing hundreds of images by exhaustively substituting each potential error, and then manually identifying the images with the fewest geometric artifacts to estimate the final geometric errors for calibration. In this paper, we comprehensively and efficiently address the challenging geometric artifacts in SMLCT, , and the corresponding works mainly involve theory, method, and generalization. In particular, after identifying sensitive parameters and conducting some theory analysis of geometric artifacts, we summarize several key properties between sensitive geometric parameters and artifact characteristics. Then, we further construct mathematical relationships that relate sensitive geometric errors to the pixel offsets of reconstruction images with artifact characteristics. To accurately extract pixel bias, we innovatively adapt the Generalized Cross-Correlation with Phase Transform (GCC-PHAT) algorithm, commonly used in sound processing, for our image registration task for each paired symmetric LCT. This adaptation leads to the design of a highly efficient rigid translation registration method. Simulation and physical experiments have validated the excellent performance of this work. Additionally, our results demonstrate significant generalization to common rotated CT and a variant of SMLCT.
Related papers
- Towards Geometric-Photometric Joint Alignment for Facial Mesh
Registration [3.588864037082647]
This paper presents a Geometric-Photometric Joint Alignment method, for accurately aligning human expressions by combining geometry and photometric information.
Experimental results demonstrate faithful alignment under various expressions, surpassing the conventional ICP-based methods and the state-of-the-art deep learning based method.
In practical, our method enhances the efficiency of obtaining topology-consistent face models from multi-view stereo facial scanning.
arXiv Detail & Related papers (2024-03-05T03:39:23Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
We introduce a novel approach to learn geometries such as depth and surface normal from images while incorporating geometric context.
Our approach extracts geometric context that encodes the geometric variations present in the input image and correlates depth estimation with geometric constraints.
Our method unifies depth and surface normal estimations within a cohesive framework, which enables the generation of high-quality 3D geometry from images.
arXiv Detail & Related papers (2024-02-08T17:57:59Z) - Capability enhancement of the X-ray micro-tomography system via
ML-assisted approaches [0.8999666725996978]
Ring artifacts in X-ray micro-CT images are one of the primary causes of concern in their accurate visual interpretation and quantitative analysis.
This article presents a convolution neural network (CNN)-based Deep Learning (DL) model inspired by UNet with a series of encoder and decoder units with skip connections for removal of ring artifacts.
arXiv Detail & Related papers (2024-02-08T14:23:24Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction [7.04200827802994]
Differentiable formulation of fan-beam CT reconstruction is extended to acquisition geometry.
As a proof-of-concept experiment, this idea is applied to rigid motion compensation.
Algorithm achieves a reduction in MSE by 35.5 % and an improvement in SSIM by 12.6 % over the motion affected reconstruction.
arXiv Detail & Related papers (2022-12-05T11:18:52Z) - Highly accurate quantum optimization algorithm for CT image
reconstructions based on sinogram patterns [0.0]
We introduce a new quantum algorithm for reconstructing Computed tomography images.
The new algorithm can also be used for cone-beam CT image reconstructions.
arXiv Detail & Related papers (2022-07-06T05:34:57Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - A novel deep learning-based method for monochromatic image synthesis
from spectral CT using photon-counting detectors [7.190103828139802]
We propose a novel deep learning-based monochromatic image synthesis method working in sinogram domain.
Our method was tested on a cone-beam CT (CBCT) system equipped with a PCD.
arXiv Detail & Related papers (2020-07-20T03:44:57Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.