Post-processing fairness with minimal changes
- URL: http://arxiv.org/abs/2408.15096v2
- Date: Thu, 29 Aug 2024 15:59:13 GMT
- Title: Post-processing fairness with minimal changes
- Authors: Federico Di Gennaro, Thibault Laugel, Vincent Grari, Xavier Renard, Marcin Detyniecki,
- Abstract summary: We introduce a novel post-processing algorithm that is both model-agnostic and does not require the sensitive attribute at test time.
Our algorithm is explicitly designed to enforce minimal changes between biased and debiased predictions.
- Score: 5.927938174149359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a novel post-processing algorithm that is both model-agnostic and does not require the sensitive attribute at test time. In addition, our algorithm is explicitly designed to enforce minimal changes between biased and debiased predictions; a property that, while highly desirable, is rarely prioritized as an explicit objective in fairness literature. Our approach leverages a multiplicative factor applied to the logit value of probability scores produced by a black-box classifier. We demonstrate the efficacy of our method through empirical evaluations, comparing its performance against other four debiasing algorithms on two widely used datasets in fairness research.
Related papers
- Optimal Group Fair Classifiers from Linear Post-Processing [10.615965454674901]
We propose a post-processing algorithm for fair classification that mitigates model bias under a unified family of group fairness criteria.
It achieves fairness by re-calibrating the output score of the given base model with a "fairness cost" -- a linear combination of the (predicted) group memberships.
arXiv Detail & Related papers (2024-05-07T05:58:44Z) - From Variability to Stability: Advancing RecSys Benchmarking Practices [3.3331198926331784]
This paper introduces a novel benchmarking methodology to facilitate a fair and robust comparison of RecSys algorithms.
By utilizing a diverse set of $30$ open datasets, including two introduced in this work, we critically examine the influence of dataset characteristics on algorithm performance.
arXiv Detail & Related papers (2024-02-15T07:35:52Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
We propose a novel taxonomy for bias evaluation of discriminative foundation models, such as Contrastive Language-Pretraining (CLIP)
We then systematically evaluate existing methods for mitigating bias in these models with respect to our taxonomy.
Specifically, we evaluate OpenAI's CLIP and OpenCLIP models for key applications, such as zero-shot classification, image retrieval and image captioning.
arXiv Detail & Related papers (2023-10-18T10:32:39Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
arXiv Detail & Related papers (2023-09-15T13:04:55Z) - dugMatting: Decomposed-Uncertainty-Guided Matting [83.71273621169404]
We propose a decomposed-uncertainty-guided matting algorithm, which explores the explicitly decomposed uncertainties to efficiently and effectively improve the results.
The proposed matting framework relieves the requirement for users to determine the interaction areas by using simple and efficient labeling.
arXiv Detail & Related papers (2023-06-02T11:19:50Z) - Fair and Optimal Classification via Post-Processing [10.163721748735801]
This paper provides a complete characterization of the inherent tradeoff of demographic parity on classification problems.
We show that the minimum error rate achievable by randomized and attribute-aware fair classifiers is given by the optimal value of a Wasserstein-barycenter problem.
arXiv Detail & Related papers (2022-11-03T00:04:04Z) - Interpolation-based Contrastive Learning for Few-Label Semi-Supervised
Learning [43.51182049644767]
Semi-supervised learning (SSL) has long been proved to be an effective technique to construct powerful models with limited labels.
Regularization-based methods which force the perturbed samples to have similar predictions with the original ones have attracted much attention.
We propose a novel contrastive loss to guide the embedding of the learned network to change linearly between samples.
arXiv Detail & Related papers (2022-02-24T06:00:05Z) - Fairness-Aware Naive Bayes Classifier for Data with Multiple Sensitive
Features [0.0]
We generalise two-naive-Bayes (2NB) into N-naive-Bayes (NNB) to eliminate the simplification of assuming only two sensitive groups in the data.
We investigate its application on data with multiple sensitive features and propose a new constraint and post-processing routine to enforce differential fairness.
arXiv Detail & Related papers (2022-02-23T13:32:21Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Towards causal benchmarking of bias in face analysis algorithms [54.19499274513654]
We develop an experimental method for measuring algorithmic bias of face analysis algorithms.
Our proposed method is based on generating synthetic transects'' of matched sample images.
We validate our method by comparing it to a study that employs the traditional observational method for analyzing bias in gender classification algorithms.
arXiv Detail & Related papers (2020-07-13T17:10:34Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.