論文の概要: Few-Shot Unsupervised Implicit Neural Shape Representation Learning with Spatial Adversaries
- arxiv url: http://arxiv.org/abs/2408.15114v1
- Date: Tue, 27 Aug 2024 14:54:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 13:23:24.334498
- Title: Few-Shot Unsupervised Implicit Neural Shape Representation Learning with Spatial Adversaries
- Title(参考訳): 空間的共振器を用いた非教師付き暗黙的ニューラルシェイプ表現学習
- Authors: Amine Ouasfi, Adnane Boukhayma,
- Abstract要約: Inlicit Neural Representationsは、複雑なデータモダリティをキャプチャする強力なフレームワークとして注目されている。
3次元形状表現の領域内では、ニューラルネットワーク符号距離関数(SDF)は複雑な形状幾何を忠実に符号化する顕著な可能性を示している。
- 参考スコア(独自算出の注目度): 8.732260277121547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities, encompassing a wide range from 3D shapes to images and audio. Within the realm of 3D shape representation, Neural Signed Distance Functions (SDF) have demonstrated remarkable potential in faithfully encoding intricate shape geometry. However, learning SDFs from sparse 3D point clouds in the absence of ground truth supervision remains a very challenging task. While recent methods rely on smoothness priors to regularize the learning, our method introduces a regularization term that leverages adversarial samples around the shape to improve the learned SDFs. Through extensive experiments and evaluations, we illustrate the efficacy of our proposed method, highlighting its capacity to improve SDF learning with respect to baselines and the state-of-the-art using synthetic and real data.
- Abstract(参考訳): Inlicit Neural Representationsは、複雑なデータモダリティをキャプチャする強力なフレームワークとして有名になり、3D形状から画像やオーディオまで幅広い範囲に及んでいる。
3次元形状表現の領域内では、ニューラルネットワーク符号距離関数(SDF)は複雑な形状幾何を忠実に符号化する顕著な可能性を示している。
しかし、地上の真実の監督がなければ、スパース3Dポイントの雲からSDFを学習することは、非常に難しい課題である。
近年の手法では, 学習の規則化にはスムーズさの先行に頼っているが, 本手法では, 学習したSDFを改善するために, 形状の逆サンプルを活用する正規化項を導入する。
提案手法の有効性を概説し,ベースラインに対するSDF学習の改善能力と,合成データと実データを用いた最先端技術について述べる。
関連論文リスト
- Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction [42.840655419509346]
本稿では, 局所形状関数を利用してUDFを学習し, 3次元点雲から表面を再構成する新しいニューラルネットワーク, LoSF-UDFを提案する。
3D形状は局所的な領域で単純なパターンを示すので、ポイントクラウドパッチのトレーニングデータセットを作成するのに役立ちます。
提案手法は,各問合せ点付近の特定の半径内の特徴を学習し,注意機構を用いてUDF推定の重要な特徴に焦点をあてる。
論文 参考訳(メタデータ) (2024-07-01T14:39:03Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Unsupervised Occupancy Learning from Sparse Point Cloud [8.732260277121547]
Inlicit Neural Representationsは、複雑なデータモダリティをキャプチャする強力なフレームワークとして注目されている。
本稿では,ニューラルサイン付き距離関数の代わりに占有領域を推定する手法を提案する。
ベースラインに対する暗黙の形状推論を改善する能力と、合成データと実データを用いた最先端技術について強調する。
論文 参考訳(メタデータ) (2024-04-03T14:05:39Z) - OV-Uni3DETR: Towards Unified Open-Vocabulary 3D Object Detection via Cycle-Modality Propagation [67.56268991234371]
OV-Uni3DETRは、様々なシナリオにおける最先端のパフォーマンスを達成し、既存のメソッドを平均6%以上上回っている。
コードと事前訓練されたモデルは、後にリリースされる。
論文 参考訳(メタデータ) (2024-03-28T17:05:04Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
クラス増分学習(class-incremental learning)は、モデルが限られたデータに基づいて漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
冗長特徴除去器(RFE)と空間ノイズ補償器(SNC)の2つの新しいコンポーネントを紹介する。
既存の3次元データセットの不均衡を考慮し、3次元FSCILモデルのより微妙な評価を提供する新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - gSDF: Geometry-Driven Signed Distance Functions for 3D Hand-Object
Reconstruction [94.46581592405066]
我々は手の構造を利用してSDFによる形状復元の指導を行う。
我々は、ポーズ変換のキネマティック連鎖を予測し、SDFを高調波ハンドポーズと整列させる。
論文 参考訳(メタデータ) (2023-04-24T10:05:48Z) - Cross-Dimensional Refined Learning for Real-Time 3D Visual Perception
from Monocular Video [2.2299983745857896]
本稿では3次元シーンの幾何学的構造と意味的ラベルを協調的に知覚する新しいリアルタイム能動的学習法を提案する。
本稿では,3次元メッシュと3次元セマンティックラベリングの両方をリアルタイムに抽出する,エンドツーエンドのクロスディメンテーションニューラルネットワーク(CDRNet)を提案する。
論文 参考訳(メタデータ) (2023-03-16T11:53:29Z) - Spatio-temporal Self-Supervised Representation Learning for 3D Point
Clouds [96.9027094562957]
ラベルのないタスクから学習できる時間的表現学習フレームワークを導入する。
幼児が野生の視覚的データからどのように学ぶかに触発され、3Dデータから派生した豊かな手がかりを探索する。
STRLは3Dポイントクラウドシーケンスから2つの時間的関連フレームを入力として、空間データ拡張で変換し、不変表現を自己指導的に学習する。
論文 参考訳(メタデータ) (2021-09-01T04:17:11Z) - 3D Shapes Local Geometry Codes Learning with SDF [8.37542758486152]
3次元形状記述としての符号付き距離関数(SDF)は、描画と再構成のための3次元幾何学を表現する最も効果的な手法の1つである。
本稿では,DeepSDFモデルのキャパシティ低下から生じる復元の劣化問題について考察する。
本稿では,局所形状から学習することで,元のDeepSDF結果を改善するモデルであるローカル幾何符号学習(LGCL)を提案する。
論文 参考訳(メタデータ) (2021-08-19T09:56:03Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z) - SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static
Images [44.78174845839193]
近年の取り組みは、注釈付き2DシルエットによるRGB画像から3Dの監督なしに3Dの再構築を学ぶことに変わった。
これらのテクニックは、トレーニング中に同じオブジェクトインスタンスのマルチビューアノテーションを必要とする。
本研究では,SDF-SRNを提案する。
論文 参考訳(メタデータ) (2020-10-20T17:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。