論文の概要: Aligning XAI with EU Regulations for Smart Biomedical Devices: A Methodology for Compliance Analysis
- arxiv url: http://arxiv.org/abs/2408.15121v1
- Date: Tue, 27 Aug 2024 14:59:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 13:23:24.322848
- Title: Aligning XAI with EU Regulations for Smart Biomedical Devices: A Methodology for Compliance Analysis
- Title(参考訳): スマートバイオメディカルデバイスのためのEU規制付きXAIのアライメント:コンプライアンス分析の方法論
- Authors: Francesco Sovrano, Michael Lognoul, Giulia Vilone,
- Abstract要約: 本研究は、バイオエレクトロニクスにおけるXAI応用とEU規制の厳格な規定の整合における重要なギャップを埋めるものである。
開発者と研究者に実践的なフレームワークを提供し、彼らのAIイノベーションが法的および倫理的基準に準拠していることを保証する。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant investment and development have gone into integrating Artificial Intelligence (AI) in medical and healthcare applications, leading to advanced control systems in medical technology. However, the opacity of AI systems raises concerns about essential characteristics needed in such sensitive applications, like transparency and trustworthiness. Our study addresses these concerns by investigating a process for selecting the most adequate Explainable AI (XAI) methods to comply with the explanation requirements of key EU regulations in the context of smart bioelectronics for medical devices. The adopted methodology starts with categorising smart devices by their control mechanisms (open-loop, closed-loop, and semi-closed-loop systems) and delving into their technology. Then, we analyse these regulations to define their explainability requirements for the various devices and related goals. Simultaneously, we classify XAI methods by their explanatory objectives. This allows for matching legal explainability requirements with XAI explanatory goals and determining the suitable XAI algorithms for achieving them. Our findings provide a nuanced understanding of which XAI algorithms align better with EU regulations for different types of medical devices. We demonstrate this through practical case studies on different neural implants, from chronic disease management to advanced prosthetics. This study fills a crucial gap in aligning XAI applications in bioelectronics with stringent provisions of EU regulations. It provides a practical framework for developers and researchers, ensuring their AI innovations advance healthcare technology and adhere to legal and ethical standards.
- Abstract(参考訳): 重要な投資と開発は、医療と医療の応用に人工知能(AI)を統合することとなり、医療技術における高度な制御システムへと繋がった。
しかし、AIシステムの不透明さは、透明性や信頼性など、このようなセンシティブなアプリケーションに必要な重要な特性に関する懸念を提起する。
本研究は、医療機器のスマートバイオエレクトロニクスの文脈において、主要なEU規制の説明要件を満たすための、最も適切な説明可能なAI(XAI)手法を選択するプロセスを検討することで、これらの懸念に対処する。
採用されている方法論は、制御メカニズム(オープンループ、クローズドループ、セミクローズドループシステム)によってスマートデバイスを分類し、その技術を掘り下げることから始まる。
そして、これらの規則を分析して、様々なデバイスと関連する目標について、それらの説明可能性要件を定義します。
同時に,その説明目的によってXAI手法を分類する。
これにより、法的説明可能性要件とXAI説明目標とを一致させ、それらを達成するのに適したXAIアルゴリズムを決定することができる。
我々の発見は、XAIアルゴリズムが異なる種類の医療機器のEU規制と整合しているという微妙な理解を提供する。
我々は、慢性疾患管理から高度な補綴物まで、様々な神経インプラントの実践的ケーススタディを通じてこれを実証する。
本研究は、バイオエレクトロニクスにおけるXAI応用とEU規制の厳格な規定の整合における重要なギャップを埋めるものである。
開発者と研究者のための実践的なフレームワークを提供し、AIイノベーションが医療技術の進歩を確実にし、法的および倫理的基準に準拠している。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Applications of Generative AI in Healthcare: algorithmic, ethical, legal and societal considerations [0.0]
生成AIは、医療画像とテキスト分析を急速に変換している。
本稿では,正確性,インフォームドコンセント,データプライバシ,アルゴリズム制限の問題について検討する。
我々は、医療における生成AIの倫理的かつ責任ある実装のロードマップを策定することを目指している。
論文 参考訳(メタデータ) (2024-06-15T13:28:07Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
我々はカスタムXAIフレームワークを活用し、LIME(Local Interpretable Model-Agnostic Explanations)、SHAP(SHapley Additive ExPlanations)、Grad-Cam(Grad-weighted Class Activation Mapping)といったテクニックを取り入れた。
提案手法は, 戦略的医療手法の有効性を高め, 信頼度を高め, 医療応用の理解を促進することを目的としている。
我々はXAIフレームワークを脳腫瘍検出に応用し,正確かつ透明な診断方法を示した。
論文 参考訳(メタデータ) (2024-03-07T01:08:41Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - Organizational Governance of Emerging Technologies: AI Adoption in
Healthcare [43.02293389682218]
Health AI Partnershipは、医療設定におけるAIシステムの適切な組織的ガバナンスの要件をより適切に定義することを目的としている。
これは、米国の医療システムによるAI導入に関わる、現在のガバナンス構造とプロセスに関する、最も詳細な定性的な分析の1つである。
これらの発見が、医療における新興テクノロジーの安全で効果的で責任ある採用を促進する能力を構築するための将来の取り組みを知らせてくれることを期待している。
論文 参考訳(メタデータ) (2023-04-25T18:30:47Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAIは、AIアプリケーションを構築するための技術と方法を指す。
モデル説明可能性と解釈可能性は、医療実践におけるAIモデルのデプロイを成功させる上で不可欠である。
論文 参考訳(メタデータ) (2023-04-04T05:41:57Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Achievements and Challenges in Explaining Deep Learning based
Computer-Aided Diagnosis Systems [4.9449660544238085]
我々は、既知の疾患基準の検証のための説明可能なAIの開発における初期の成果について論じる。
我々は、臨床意思決定支援ツールとしてのAIの実践的応用の道に立つ、残る課題をいくつか強調する。
論文 参考訳(メタデータ) (2020-11-26T08:08:19Z) - OnRAMP for Regulating AI in Medical Products [0.0]
この視点は、規制パッケージの生産と互換性のある開発のためのベストプラクティスガイドラインを提案する。
これらのガイドラインにより、共通の機械学習プラクティスの開発において、すべての関係者がより明確にコミュニケーションできるようになります。
論文 参考訳(メタデータ) (2020-10-09T14:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。