論文の概要: Histo-Diffusion: A Diffusion Super-Resolution Method for Digital Pathology with Comprehensive Quality Assessment
- arxiv url: http://arxiv.org/abs/2408.15218v1
- Date: Tue, 27 Aug 2024 17:31:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 12:53:10.610090
- Title: Histo-Diffusion: A Diffusion Super-Resolution Method for Digital Pathology with Comprehensive Quality Assessment
- Title(参考訳): Histo-Diffusion: 包括的品質評価によるデジタル診断のための拡散超解法
- Authors: Xuan Xu, Saarthak Kapse, Prateek Prasanna,
- Abstract要約: ヒスト拡散(Histo-Diffusion)は、デジタル病理学における超解像の生成と評価のために特別に設計された拡散法である。
病理組織学の復元モジュールと、高品質な画像を生成するための制御可能な拡散モジュールを含む。
- 参考スコア(独自算出の注目度): 6.350679043444348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital pathology has advanced significantly over the last decade, with Whole Slide Images (WSIs) encompassing vast amounts of data essential for accurate disease diagnosis. High-resolution WSIs are essential for precise diagnosis but technical limitations in scanning equipment and variablity in slide preparation can hinder obtaining these images. Super-resolution techniques can enhance low-resolution images; while Generative Adversarial Networks (GANs) have been effective in natural image super-resolution tasks, they often struggle with histopathology due to overfitting and mode collapse. Traditional evaluation metrics fall short in assessing the complex characteristics of histopathology images, necessitating robust histology-specific evaluation methods. We introduce Histo-Diffusion, a novel diffusion-based method specially designed for generating and evaluating super-resolution images in digital pathology. It includes a restoration module for histopathology prior and a controllable diffusion module for generating high-quality images. We have curated two histopathology datasets and proposed a comprehensive evaluation strategy which incorporates both full-reference and no-reference metrics to thoroughly assess the quality of digital pathology images. Comparative analyses on multiple datasets with state-of-the-art methods reveal that Histo-Diffusion outperforms GANs. Our method offers a versatile solution for histopathology image super-resolution, capable of handling multi-resolution generation from varied input sizes, providing valuable support in diagnostic processes.
- Abstract(参考訳): デジタル病理学は過去10年間で大きく進歩し、WSI(Whole Slide Images)は正確な疾患診断に不可欠な膨大なデータを含んでいる。
高分解能 WSI は正確な診断には不可欠であるが, 走査装置の技術的制限やスライド装置のバリアビリティは, これらの画像の取得を妨げる可能性がある。
GAN(Generative Adversarial Networks)は自然画像の超解像処理に有効であるが、オーバーフィッティングやモード崩壊のために病理学に苦慮することが多い。
従来の評価基準は、病理組織像の複雑な特徴を評価するのに不足しており、堅牢な病理組織学的評価方法を必要とする。
デジタル病理学における超高解像度画像の生成と評価に特化して設計された新しい拡散法であるHisto-Diffusionを紹介する。
病理組織学の復元モジュールと、高品質な画像を生成するための制御可能な拡散モジュールを含む。
われわれは2つの病理組織学的データセットをキュレートし、デジタル病理画像の品質を徹底的に評価するために、全参照指標と非参照指標の両方を組み込んだ総合的な評価戦略を提案した。
複数のデータセットと最先端手法の比較分析により,Histo-DiffusionがGANより優れていることが明らかになった。
本手法は,多彩な入力サイズから多能性生成を処理し,診断過程において有意義な支援を行うことのできる,病理組織像超解像のための汎用的ソリューションを提供する。
関連論文リスト
- HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGymは、医師の実際の過程を模倣して、スライド画像全体の診断を促進することを目的としている。
私たちは、WSIベースのシナリオと選択された地域ベースのシナリオを含む、さまざまな臓器や癌のシナリオを提供しています。
論文 参考訳(メタデータ) (2024-08-16T17:19:07Z) - URCDM: Ultra-Resolution Image Synthesis in Histopathology [4.393805955844748]
Ultra-Resolution Cascaded Diffusion Models (URCDMs) は、すべての病理像を高分解能で合成することができる。
本手法は脳,乳腺,腎臓の組織からなる3つの異なるデータセットを用いて評価した。
URCDMは、訓練された評価器が実際の画像と区別できない様々な解像度の出力を一貫して生成する。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
胸部X線(CXR)を低分解能で診断する上での課題について検討した。
高分解能CXRイメージングは、結節や不透明など、小さなが重要な異常を識別するために重要である。
本稿では,MLCAK(Multilevel Collaborative Attention Knowledge)法を提案する。
論文 参考訳(メタデータ) (2024-05-22T06:10:54Z) - Cross-Modal Domain Adaptation in Brain Disease Diagnosis: Maximum Mean Discrepancy-based Convolutional Neural Networks [0.0]
脳障害は世界の健康にとって大きな課題であり、毎年何百万人もの死者を出している。
これらの疾患の正確な診断は、MRIやCTのような高度な医療画像技術に大きく依存している。
注釈付きデータの不足は、診断のための機械学習モデルをデプロイする上で大きな課題となる。
論文 参考訳(メタデータ) (2024-05-06T07:44:46Z) - Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution using Conditional Diffusion Model [2.507050016527729]
トリモーダル医療画像融合は、病気の形状、位置、生物学的活動をより包括的に見ることができる。
画像装置の限界や患者の安全への配慮により、医療画像の品質は制限されることが多い。
画像の解像度を向上し、マルチモーダル情報を統合できる技術が緊急に必要である。
論文 参考訳(メタデータ) (2024-04-26T12:13:41Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Generative Adversarial Networks for Stain Normalisation in
Histopathology [2.2166690647926037]
現在の研究における重要な障害の1つは、デジタル病理画像間の高レベルの視覚的変動である。
Sten normalization は、画像の構造的内容を変更することなく、デジタル病理画像の視覚的プロファイルを標準化することを目的としている。
研究者は、病理画像を効率的に正規化し、AIモデルをより堅牢で一般化可能にする方法を見つけることを目的としている。
論文 参考訳(メタデータ) (2023-08-05T11:38:05Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。