Automated Synthesis of Quantum Algorithms via Classical Numerical Techniques
- URL: http://arxiv.org/abs/2408.15225v1
- Date: Tue, 27 Aug 2024 17:43:58 GMT
- Title: Automated Synthesis of Quantum Algorithms via Classical Numerical Techniques
- Authors: Yuxin Huang, Benjamin E. Grossman-Ponemon, David A. B. Hyde,
- Abstract summary: We apply numerical optimization and linear algebra algorithms for classical computers to the problem of automatically synthesizing algorithms for quantum computers.
Our methods are evaluated on single-qubit systems as well as on larger systems.
- Score: 2.7536859673878857
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We apply numerical optimization and linear algebra algorithms for classical computers to the problem of automatically synthesizing algorithms for quantum computers. Using our framework, we apply several common techniques from these classical domains and numerically examine their suitability for and performance on this problem. Our methods are evaluated on single-qubit systems as well as on larger systems. While the first part of our proposed method outputs a single unitary matrix representing the composite effects of a quantum circuit or algorithm, we use existing tools - and assess the performance of these - to factor such a matrix into a product of elementary quantum gates. This enables our pipeline to be truly end-to-end: starting from desired input/output examples, our code ultimately results in a quantum circuit diagram. We release our code to the research community (upon acceptance).
Related papers
- Double-Logarithmic Depth Block-Encodings of Simple Finite Difference Method's Matrices [0.0]
Solving differential equations is one of the most computationally expensive problems in classical computing.
Despite recent progress made in the field of quantum computing and quantum algorithms, its end-to-end application towards practical realization still remains unattainable.
arXiv Detail & Related papers (2024-10-07T17:44:30Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
This paper develops a formal framework for describing hybrid algorithms in terms of string diagrams.
A notable feature of our string diagrams is the use of functor boxes, which correspond to a quantum-classical interfaces.
arXiv Detail & Related papers (2024-07-04T06:37:16Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - A Quantum Computer Amenable Sparse Matrix Equation Solver [0.0]
We study problems involving the solution of matrix equations, for which there currently exists no efficient, general quantum procedure.
We develop a generalization of the Harrow/Hassidim/Lloyd algorithm by providing an alternative unitary for eigenphase estimation.
This unitary has the advantage of being well defined for any arbitrary matrix equation, thereby allowing the solution procedure to be directly implemented on quantum hardware.
arXiv Detail & Related papers (2021-12-05T15:42:32Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - On connectivity-dependent resource requirements for digital quantum
simulation of $d$-level particles [0.703901004178046]
We study the number of SWAP gates required to Trotterize commonly used quantum operators.
Results are applicable in hardware co-design and in choosing efficient qudit encodings for a given set of near-term quantum hardware.
arXiv Detail & Related papers (2020-05-26T22:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.