論文の概要: Emotion Classification from Multi-Channel EEG Signals Using HiSTN: A Hierarchical Graph-based Spatial-Temporal Approach
- arxiv url: http://arxiv.org/abs/2408.15255v1
- Date: Fri, 9 Aug 2024 12:32:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 16:42:01.583187
- Title: Emotion Classification from Multi-Channel EEG Signals Using HiSTN: A Hierarchical Graph-based Spatial-Temporal Approach
- Title(参考訳): HiSTNを用いたマルチチャネル脳波信号からの感情分類:階層グラフに基づく時空間的アプローチ
- Authors: Dongyang Kuang, Xinyue Song, Craig Michoski,
- Abstract要約: 本研究では,感情分類のためのパラメータ係数ネットワークを提案する。
このネットワークには、ボトムアップからさまざまな抽象化レベルで構築されたグラフ階層が組み込まれている。
平均F1スコアは96.82%(原子価)、95.62%(原子価)である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a parameter-efficient Hierarchical Spatial Temporal Network (HiSTN) specifically designed for the task of emotion classification using multi-channel electroencephalogram data. The network incorporates a graph hierarchy constructed from bottom-up at various abstraction levels, offering the dual advantages of enhanced task-relevant deep feature extraction and a lightweight design. The model's effectiveness is further amplified when used in conjunction with a proposed unique label smoothing method. Comprehensive benchmark experiments reveal that this combined approach yields high, balanced performance in terms of both quantitative and qualitative predictions. HiSTN, which has approximately 1,000 parameters, achieves mean F1 scores of 96.82% (valence) and 95.62% (arousal) in subject-dependent tests on the rarely-utilized 5-classification task problem from the DREAMER dataset. In the subject-independent settings, the same model yields mean F1 scores of 78.34% for valence and 81.59% for arousal. The adoption of the Sequential Top-2 Hit Rate (Seq2HR) metric highlights the significant enhancements in terms of the balance between model's quantitative and qualitative for predictions achieved through our approach when compared to training with regular one-hot labels. These improvements surpass 50% in subject-dependent tasks and 30% in subject-independent tasks. The study also includes relevant ablation studies and case explorations to further elucidate the workings of the proposed model and enhance its interpretability.
- Abstract(参考訳): 本研究では,多チャンネル脳波データを用いた感情分類のためのパラメータ効率の高い階層型時空間ネットワーク(HiSTN)を提案する。
このネットワークにはボトムアップから様々な抽象化レベルで構築されたグラフ階層が組み込まれており、タスク関連の深い特徴抽出と軽量な設計の2つの利点を提供している。
このモデルの有効性は、提案したユニークなラベル平滑化手法と併用することでさらに増幅される。
総合的なベンチマーク実験により、この組み合わせは量的および定性的な予測の両方の観点から高い、バランスの取れた性能をもたらすことが明らかになった。
約1,000のパラメータを持つHiSTNは、DREAMERデータセットからほとんど使われていない5つの分類タスク問題に対する被検者依存テストにおいて、96.82%(原子価)と95.62%(原子価)の平均F1スコアを達成している。
被験者に依存しない設定では、同じモデルで平均F1スコアが78.34%、興奮81.59%となる。
シークエンシャルトップ2ヒットレート(Seq2HR)メトリクスの採用は、通常のワンホットラベルによるトレーニングと比較して、我々のアプローチによって達成された予測に対するモデルの量的および質的なバランスの点で、重要な改善点を浮き彫りにしている。
これらの改善は、主観非依存タスクの50%以上、主観非依存タスクの30%を超えている。
この研究は、関連するアブレーション研究やケーススタディも含み、提案モデルの動作をさらに解明し、解釈可能性を高める。
関連論文リスト
- Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design [14.37149160708975]
Kolmogorov-Arnold Networks (KAN)は、最近開発されたアーキテクチャであり、入力機能の精度と解釈性の両方を改善することを目的としている。
本研究では,HEA設計のための3つの異なるデータセットを探索し,分類モデルと回帰モデルの両方に対するkanの適用を実証する。
論文 参考訳(メタデータ) (2024-10-11T01:48:47Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
我々は,BPRモデルの特徴を考察し,その性能への影響を示し,オープンソースのBPR実装について検討する。
分析の結果,これらの実装とオリジナルのBPR論文の矛盾が明らかとなり,特定の実装に対して最大50%の性能低下がみられた。
BPRモデルは、トップnのレコメンデーションタスクにおける最先端メソッドに近いパフォーマンスレベルを達成でき、特定のデータセット上でもパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2024-09-21T18:39:53Z) - Multi-objective Representation for Numbers in Clinical Narratives Using CamemBERT-bio [0.9208007322096533]
本研究の目的は,医学文献から抽出した数値を7つの生理カテゴリーに分類することである。
キーワード埋め込みをモデルに統合し、数に依存しない戦略を採用する、という2つの主要なイノベーションを紹介します。
従来のF1スコア0.89を上回り,CamemBERT-bioの有効性を著しく改善した。
論文 参考訳(メタデータ) (2024-05-28T01:15:21Z) - Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning [50.809769498312434]
我々は、時間的デュアルディープス・スコーリング(TDDS)と呼ばれる新しいデータセット・プルーニング手法を提案する。
本手法は,10%のトレーニングデータで54.51%の精度を達成し,ランダム選択を7.83%以上,他の比較手法を12.69%以上上回る結果を得た。
論文 参考訳(メタデータ) (2023-11-22T03:45:30Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - A new weakly supervised approach for ALS point cloud semantic
segmentation [1.4620086904601473]
本稿では,ALS点雲のセマンティックセグメンテーションのための,ディープラーニングに基づく弱教師付きフレームワークを提案する。
不完全でスパースなラベルの対象となるラベルのないデータから潜在的情報を利用する。
本手法は, 総合精度が83.0%, 平均F1スコアが70.0%であり, それぞれ6.9%, 12.8%増加した。
論文 参考訳(メタデータ) (2021-10-04T14:00:23Z) - New Perspective on Progressive GANs Distillation for One-class Novelty
Detection [21.90786581579228]
Thecoder-Decoder-Encoder scheme (EDE-GAN) に基づくジェネレーティブ・アドバイサル・ネットワークは最先端の性能を実現する。
新しい技術、P-KDGAN(Progressive Knowledge Distillation with GAN)は、設計された蒸留損失を通じて2つの標準GANを接続する。
2段階のプログレッシブ・ラーニングは、シングルステップ・アプローチよりも成績が向上し、学生のGANのパフォーマンスを継続的に向上させる。
論文 参考訳(メタデータ) (2021-09-15T13:45:30Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
本稿では,難しい場合であっても,ハイブリッドベースラインに近い性能を示すエンドツーエンドアプローチについて論じる。
CTC-Attention と RNN-Transducer のアプローチと RNN と Transformer のアーキテクチャを比較し,解析する。
RNN-Transducerをベースとしたベストエンド・ツー・エンドモデルでは、ビームサーチの改善とともに、LF-MMI TDNN-F CHiME-6 Challengeのベースラインよりも品質が3.8%向上した。
論文 参考訳(メタデータ) (2020-04-22T19:08:33Z) - Adversarial Feature Hallucination Networks for Few-Shot Learning [84.31660118264514]
Adversarial Feature Hallucination Networks (AFHN) は条件付き Wasserstein Generative Adversarial Network (cWGAN) に基づいている。
合成された特徴の識別性と多様性を促進するために、2つの新規レギュレータがAFHNに組み込まれている。
論文 参考訳(メタデータ) (2020-03-30T02:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。