論文の概要: Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design
- arxiv url: http://arxiv.org/abs/2410.08452v1
- Date: Fri, 11 Oct 2024 01:48:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:16:22.906353
- Title: Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design
- Title(参考訳): 高エントロピー合金設計のためのコルモゴロフ・アルノルドニューラルネットワーク
- Authors: Yagnik Bandyopadhyay, Harshil Avlani, Houlong L. Zhuang,
- Abstract要約: Kolmogorov-Arnold Networks (KAN)は、最近開発されたアーキテクチャであり、入力機能の精度と解釈性の両方を改善することを目的としている。
本研究では,HEA設計のための3つの異なるデータセットを探索し,分類モデルと回帰モデルの両方に対するkanの適用を実証する。
- 参考スコア(独自算出の注目度): 14.37149160708975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A wide range of deep learning-based machine learning techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such as F1 score for classification and Mean Square Error (MSE), and coefficient of determination (R2) for regression of the multilayer perceptron (MLP) by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced machine learning techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.
- Abstract(参考訳): 深層学習に基づく機械学習技術は、高エントロピー合金(HEA)の設計に広く応用されており、多くの貴重な洞察を得ている。
Kolmogorov-Arnold Networks (KAN)は、最近開発されたアーキテクチャであり、入力機能の精度と解釈性の両方を改善することを目的としている。
本研究では,HEA設計のための3つの異なるデータセットを探索し,分類モデルと回帰モデルの両方に対するkanの適用を実証する。
最初の例では、エンタルピーと価電子濃度の混合といった様々な性質に基づいて、高エントロピー炭化物セラミックスの単相生成の確率を予測するために、KA分類モデルを用いる。
第2の例では, 熱処理時間, 冷間圧延率, 均質化温度を含むプロセス条件と化学組成に基づいて, HEAの降伏強度と究極引張強度を予測するために, KA回帰モデルを用いる。
第3の例は、ある組成がHEAであるか非HEAであるかを判断するカン分類モデルと、同定されたHEAのバルク率を予測するカン回帰モデルである。
これら3つの例は、分類のためのF1スコアや平均正方誤差(MSE)、多層パーセプトロン(MLP)の回帰のための決定係数(R2)などの精度において、分類および回帰タスクの両処理におけるkanの有効性を実証することにより、パフォーマンスを上回るか、一致させるかのどちらかである。
我々は、先進的な機械学習技術を探求し、複雑な材料をより正確に予測し、より解釈しやすくし、最終的に望ましい特性を持つHEAの発見と最適化を加速する将来的な方向を提供する。
関連論文リスト
- Nested Annealed Training Scheme for Generative Adversarial Networks [54.70743279423088]
本稿では、厳密な数学的理論的枠組みである複合機能段階GAN(CFG)に焦点を当てる。
CFGモデルとスコアベースモデルとの理論的関係を明らかにする。
CFG判別器の学習目的は最適D(x)を求めることと等価であることがわかった。
論文 参考訳(メタデータ) (2025-01-20T07:44:09Z) - Exploring Kolmogorov-Arnold Networks for Interpretable Time Series Classification [0.17999333451993949]
Kolmogorov-Arnold Networks (KAN) は最先端モデルのより解釈可能な代替として提案されている。
本稿では,時系列分類のためのKANアーキテクチャの包括的かつ堅牢な探索を実現することを目的とする。
その結果,(1)効率の良いKANは,タスク分類タスクに適した性能を示し,性能と計算効率に優れていた。
論文 参考訳(メタデータ) (2024-11-22T13:01:36Z) - Hybrid Deep Convolutional Neural Networks Combined with Autoencoders And Augmented Data To Predict The Look-Up Table 2006 [2.082445711353476]
本研究では、自己エンコーダとデータ拡張技術により強化されたハイブリッドディープ畳み込みニューラルネットワーク(DCNN)モデルの開発について検討する。
オリジナルの入力機能を3つの異なるオートエンコーダ構成で拡張することにより、モデルの予測能力は大幅に改善された。
論文 参考訳(メタデータ) (2024-08-26T20:45:07Z) - Scoreformer: A Surrogate Model For Large-Scale Prediction of Docking Scores [0.0]
分子ドッキングスコアを正確に予測するために設計された新しいグラフトランスフォーマモデルであるScoreFormerを提案する。
ScoreFormerはドッキングスコア予測の競争性能を達成し、既存のモデルに比べて1.65倍の推論時間削減を実現している。
論文 参考訳(メタデータ) (2024-06-13T17:31:02Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるサツマイモクローンの選択プロセスの向上を目的とした, 機械学習アルゴリズムの適用について検討する。
本研究は, 高収率, 耐病性, 耐気候性ポテト品種を効率的に同定することの課題に対処する。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - Representer Point Selection for Explaining Regularized High-dimensional
Models [105.75758452952357]
本稿では,高次元表現器と呼ぶサンプルベース説明のクラスを紹介する。
私たちのワークホースは、一般化された高次元モデルに対する新しい代表者定理である。
提案手法の実証的性能について,実世界の2進分類データセットと2つの推薦システムデータセットを用いて検討した。
論文 参考訳(メタデータ) (2023-05-31T16:23:58Z) - A Three-regime Model of Network Pruning [47.92525418773768]
我々は、ニューラルネットワーク(NN)トレーニングのハイパーパラメータが刈り取り性能に与える影響をモデル化するために、温度のようなパラメータと負荷のようなパラメータを使用します。
プレプルーニングモデルにおける負荷様パラメータの値に依存すると、プレプルーニングモデルにおける温度様パラメータの値が増加するか、その後のプルーニング性能が向上または損なわれる可能性がある。
本モデルでは, 高温のダイコトモス効果は, ポストプランニングモデルにおいて, 異なるタイプの大域構造間の遷移と関係していることが明らかとなった。
論文 参考訳(メタデータ) (2023-05-28T08:09:25Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。