論文の概要: Learning Granularity Representation for Temporal Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2408.15293v1
- Date: Tue, 27 Aug 2024 08:19:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 18:12:06.936816
- Title: Learning Granularity Representation for Temporal Knowledge Graph Completion
- Title(参考訳): 時間的知識グラフ補完のための粒度表現の学習
- Authors: Jinchuan Zhang, Tianqi Wan, Chong Mu, Guangxi Lu, Ling Tian,
- Abstract要約: 時間的知識グラフ(TKG)は、実世界の事実の動的な構造的知識と進化的パターンを反映する時間的情報を含んでいる。
本稿では,TKG 補完のための textbfLearning textbfGranularity textbfRepresentation (termed $mathsfLGRe$) を提案する。
グラニュラリティ・ラーニング(GRL)とアダプティブグラニュラリティ・バランシング(AGB)の2つの主要コンポーネントから構成される。
- 参考スコア(独自算出の注目度): 2.689675451882683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts. Nevertheless, TKGs are still limited in downstream applications due to the problem of incompleteness. Consequently, TKG completion (also known as link prediction) has been widely studied, with recent research focusing on incorporating independent embeddings of time or combining them with entities and relations to form temporal representations. However, most existing methods overlook the impact of history from a multi-granularity aspect. The inherent semantics of human-defined temporal granularities, such as ordinal dates, reveal general patterns to which facts typically adhere. To counter this limitation, this paper proposes \textbf{L}earning \textbf{G}ranularity \textbf{Re}presentation (termed $\mathsf{LGRe}$) for TKG completion. It comprises two main components: Granularity Representation Learning (GRL) and Adaptive Granularity Balancing (AGB). Specifically, GRL employs time-specific multi-layer convolutional neural networks to capture interactions between entities and relations at different granularities. After that, AGB generates adaptive weights for these embeddings according to temporal semantics, resulting in expressive representations of predictions. Moreover, to reflect similar semantics of adjacent timestamps, a temporal loss function is introduced. Extensive experimental results on four event benchmarks demonstrate the effectiveness of $\mathsf{LGRe}$ in learning time-related representations. To ensure reproducibility, our code is available at https://github.com/KcAcoZhang/LGRe.
- Abstract(参考訳): 時間的知識グラフ(TKG)は、実世界の事実の動的な構造的知識と進化的パターンを反映する時間的情報を含んでいる。
それでも、TKGは不完全性の問題のため、下流のアプリケーションでは制限されている。
その結果、TKG完了(リンク予測とも呼ばれる)は広く研究され、最近の研究では、時間の独立した埋め込みを取り入れたり、時間的表現を形成するための実体や関係と組み合わせることに焦点を当てている。
しかし、既存のほとんどのメソッドは、複数粒度の側面から歴史の影響を見落としている。
順序の日付など、人間の定義した時間的粒度の固有の意味論は、事実が一般的に従う一般的なパターンを明らかにしている。
この制限に対処するために、TKG完了に対する \textbf{L}earning \textbf{G}ranularity \textbf{Re}presentation (termed $\mathsf{LGRe}$)を提案する。
グラニュラリティ表現学習(GRL)とアダプティブグラニュラリティバランス(AGB)の2つの主要コンポーネントから構成される。
具体的には、GRLは時間固有の多層畳み込みニューラルネットワークを使用して、異なる粒度のエンティティと関係の間の相互作用をキャプチャする。
その後、AGBは時間的意味論に基づいてこれらの埋め込みに対する適応的な重みを生成し、その結果予測の表現が表現される。
さらに、隣接するタイムスタンプの類似した意味を反映し、時間的損失関数を導入する。
4つのイベントベンチマークの大規模な実験結果から,学習時間関連表現における$\mathsf{LGRe}$の有効性が示された。
再現性を確保するため、私たちのコードはhttps://github.com/KcAcoZhang/LGRe.comで利用可能です。
関連論文リスト
- Learning Multi-graph Structure for Temporal Knowledge Graph Reasoning [3.3571415078869955]
本稿では,LMS(Learning Multi-graph Structure)に着目した革新的な推論手法を提案する。
LMSは、タイムスタンプに沿って効果的にエンティティ表現をマージするための適応ゲートを組み込んでいる。
また、タイムスタンプのセマンティクスをグラフアテンション計算や時間認識デコーダに統合する。
論文 参考訳(メタデータ) (2023-12-04T08:23:09Z) - Temporal Inductive Path Neural Network for Temporal Knowledge Graph
Reasoning [16.984588879938947]
時間的知識グラフ(TKG)の推論は、過去の出来事に基づいて将来の事実を予測することを目的としている。
既存のほとんどのアプローチでは、グラフ内のノードが知識表現において重要な役割を果たすため、エンティティモデリングに依存するTKGをモデル化する。
実体に依存しない視点で過去の情報をモデル化するTiPNN(Temporal Inductive Path Neural Network)を提案する。
論文 参考訳(メタデータ) (2023-09-06T17:37:40Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
論文 参考訳(メタデータ) (2023-08-29T03:26:38Z) - Generic Temporal Reasoning with Differential Analysis and Explanation [61.96034987217583]
時間差分解析でギャップを埋めるTODAYという新しいタスクを導入する。
TODAYは、システムがインクリメンタルな変化の効果を正しく理解できるかどうかを評価する。
共同学習においてTODAYの指導スタイルと説明アノテーションが有効であることを示す。
論文 参考訳(メタデータ) (2022-12-20T17:40:03Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
離散時間動的グラフ、すなわちDyTedのための新しいディペンタングル表現学習フレームワークを提案する。
本研究では,時間不変の表現と時間変動の表現を効果的に識別する構造的コントラスト学習とともに,時間的クリップのコントラスト学習タスクを特別に設計する。
論文 参考訳(メタデータ) (2022-10-19T14:34:12Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS)は、シーケンシャルデータのための新しいDisentanglement Enhanceingフレームワークである。
DTSは時系列の解釈可能な表現として階層的意味概念を生成する。
DTSは、セマンティック概念の解釈性が高く、下流アプリケーションで優れたパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-05-17T22:02:24Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
将来の事実を予測する鍵は、歴史的事実を徹底的に理解することです。
TKGは実際には異なるタイムスタンプに対応するKGのシーケンスである。
グラフ畳み込みネットワーク(GCN)に基づく新しいリカレント進化ネットワークを提案する。
論文 参考訳(メタデータ) (2021-04-21T05:12:21Z) - Temporal Contrastive Graph Learning for Video Action Recognition and
Retrieval [83.56444443849679]
本研究では,動画内の時間依存性を利用して,TCGL (temporal Contrastive Graph Learning) という新たな自己監督手法を提案する。
TCGLは、スニペット間およびスニペット内時間依存性を時間表現学習のための自己監督信号として共同で評価するハイブリッドグラフコントラスト学習戦略をルーツとしています。
実験結果は、大規模アクション認識およびビデオ検索ベンチマークにおける最先端の方法よりも、TCGLの優位性を示しています。
論文 参考訳(メタデータ) (2021-01-04T08:11:39Z) - T-GAP: Learning to Walk across Time for Temporal Knowledge Graph
Completion [13.209193437124881]
時間的知識グラフ(TKG)は、静的知識グラフとは対照的に、本質的に現実世界の知識の過渡的な性質を反映している。
エンコーダとデコーダにおける時間情報とグラフ構造の両方を最大限に活用するTKG補完の新しいモデルであるT-GAPを提案する。
本実験は、T-GAPが最先端のベースラインに対する優れた性能を達成し、目に見えないタイムスタンプによるクエリに有能に一般化することを示す。
論文 参考訳(メタデータ) (2020-12-19T04:45:32Z) - TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation [12.138550487430807]
本稿では,TKG埋め込みの新しいアプローチであるTeRoについて述べる。
提案モデルでは,既存のKG埋め込みモデルとTKG埋め込みモデルの限界を克服する。
4つの異なるTKG実験の結果、TeRoはリンク予測のための既存の最先端モデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-10-02T14:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。