論文の概要: Optimizing Lung Cancer Detection in CT Imaging: A Wavelet Multi-Layer Perceptron (WMLP) Approach Enhanced by Dragonfly Algorithm (DA)
- arxiv url: http://arxiv.org/abs/2408.15355v1
- Date: Tue, 27 Aug 2024 18:27:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 18:02:17.281864
- Title: Optimizing Lung Cancer Detection in CT Imaging: A Wavelet Multi-Layer Perceptron (WMLP) Approach Enhanced by Dragonfly Algorithm (DA)
- Title(参考訳): CT画像における肺がん検出の最適化:Dragonfly Algorithm(DA)によるウェーブレット多層パーセプトロン(WMLP)アプローチ
- Authors: Bitasadat Jamshidi, Nastaran Ghorbani, Mohsen Rostamy-Malkhalifeh,
- Abstract要約: 本研究では,CTスキャン画像から肺がんを分類するための最先端のディープラーニングフレームワークを提案する。
この研究には、画像前処理戦略、特にCannyエッジ検出とウェーブレット変換が含まれる。
この手法は99.82%の優れた訓練と検査精度を達成し、肺癌の正確な診断の有効性と信頼性を裏付けている。
- 参考スコア(独自算出の注目度): 0.294944680995069
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lung cancer stands as the preeminent cause of cancer-related mortality globally. Prompt and precise diagnosis, coupled with effective treatment, is imperative to reduce the fatality rates associated with this formidable disease. This study introduces a cutting-edge deep learning framework for the classification of lung cancer from CT scan imagery. The research encompasses a suite of image pre-processing strategies, notably Canny edge detection, and wavelet transformations, which precede the extraction of salient features and subsequent classification via a Multi-Layer Perceptron (MLP). The optimization process is further refined using the Dragonfly Algorithm (DA). The methodology put forth has attained an impressive training and testing accuracy of 99.82\%, underscoring its efficacy and reliability in the accurate diagnosis of lung cancer.
- Abstract(参考訳): 肺がんは、世界的にがん関連死亡率の高い原因である。
プロンプトと正確な診断と効果的な治療は、この重篤な疾患に関連する死亡率を減らすために必須である。
本研究では,CTスキャン画像から肺がんを分類するための最先端のディープラーニングフレームワークを提案する。
この研究には、カニーエッジ検出やウェーブレット変換など、画像前処理の一連の戦略が含まれており、これは、多層パーセプトロン(MLP)による有能な特徴の抽出とその後の分類に先立って行われる。
最適化プロセスはさらにDragonfly Algorithm (DA)を用いて洗練されている。
この手法は、肺がんの正確な診断におけるその有効性と信頼性を裏付ける、99.82\%の優れたトレーニングとテストの精度を達成した。
関連論文リスト
- MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [17.838015589388014]
肺結節は肺癌の早期診断における重要な指標である。
従来のCT画像撮影法は、煩雑な処置、低検出率、ローカライゼーション精度の低下に悩まされていた。
肺小結節検出のためのマルチスケールアテンションおよび受容野ネットワークであるMSDetを提案する。
論文 参考訳(メタデータ) (2024-09-21T06:08:23Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
肺がんは最も致命的な疾患の1つであり、疾患や死亡の原因となっている。
提案手法は既存の手法で解析した18.32%,27.20%,34.32%の精度で得られた。
論文 参考訳(メタデータ) (2023-12-05T10:53:35Z) - Hybrid Whale-Mud-Ring Optimization for Precise Color Skin Cancer Image
Segmentation [2.674706888799469]
皮膚内視鏡は皮膚がんの早期発見において重要な役割を担っている。
皮膚癌診断の精度を高めるためには,デジタル皮膚内視鏡画像の効果的な処理が重要である。
本稿では,WMRA と呼ばれる Whale Optimization Algorithm とハイブリッド化された Mud Ring Algorithm の強化版を提案する。
論文 参考訳(メタデータ) (2023-11-22T16:35:43Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
乳癌(BC)は、女性のがん関連死亡率に大きく寄与する。
悪性の腫瘤を正確に識別することは 依然として困難です
マンモグラフィ画像を用いたBCGスクリーニングのための新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T10:22:14Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - 3D Neural Network for Lung Cancer Risk Prediction on CT Volumes [0.6810862244331126]
肺がんはアメリカ合衆国で最も多いがん死の原因である。
肺がんCT検査は、死亡率を40%まで下げることが示されている。
放射線診断の基準が採用されているにもかかわらず, 経年変化が持続的であり, 包括的画像所見の不完全な特徴が現在の方法の限界として残っている。
本稿では,肺がんリスク予測のための最先端ディープラーニングアルゴリズムを再現する。
論文 参考訳(メタデータ) (2020-07-25T10:01:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。