Showing the Receipts: Understanding the Modern Ransomware Ecosystem
- URL: http://arxiv.org/abs/2408.15420v1
- Date: Tue, 27 Aug 2024 21:51:52 GMT
- Title: Showing the Receipts: Understanding the Modern Ransomware Ecosystem
- Authors: Jack Cable, Ian W. Gray, Damon McCoy,
- Abstract summary: We present novel techniques to identify ransomware payments with low false positives.
We publish the largest public dataset of over $900 million in ransomware payments.
We then leverage this expanded dataset to present an analysis focused on understanding the activities of ransomware groups over time.
- Score: 4.058903075267789
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ransomware attacks continue to wreak havoc across the globe, with public reports of total ransomware payments topping billions of dollars annually. While the use of cryptocurrency presents an avenue to understand the tactics of ransomware actors, to date published research has been constrained by relatively limited public datasets of ransomware payments. We present novel techniques to identify ransomware payments with low false positives, classifying nearly \$700 million in previously-unreported ransomware payments. We publish the largest public dataset of over \$900 million in ransomware payments -- several times larger than any existing public dataset. We then leverage this expanded dataset to present an analysis focused on understanding the activities of ransomware groups over time. This provides unique insights into ransomware behavior and a corpus for future study of ransomware cybercriminal activity.
Related papers
- Assessing and Prioritizing Ransomware Risk Based on Historical Victim Data [0.0]
We present an approach to identifying which ransomware adversaries are most likely to target specific entities.
Ransomware poses a formidable cybersecurity threat characterized by profit-driven motives, a complex underlying economy supporting criminal syndicates, and the overt nature of its attacks.
arXiv Detail & Related papers (2025-02-06T15:57:56Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Crypters are pieces of software whose main goal is to transform a target binary so it can avoid detection from Anti Viruses (AVs) applications.
The crypter-as-a-service model has gained popularity, in response to the increased sophistication of detection mechanisms.
This paper provides the first study on an online underground market dedicated to crypter-as-a-service.
arXiv Detail & Related papers (2024-05-20T08:35:39Z) - Ransomware Detection Dynamics: Insights and Implications [0.0]
This research investigates the utilization of a feature selection algorithm for distinguishing ransomware-related and benign transactions in Bitcoin (BTC) and United States Dollar (USD)
We propose a set of novel features designed to capture the distinct characteristics of ransomware activity within the cryptocurrency ecosystem.
Through rigorous experimentation and evaluation, we demonstrate the effectiveness of our feature set in accurately extracting BTC and USD transactions.
arXiv Detail & Related papers (2024-02-07T05:36:06Z) - Ransomware Detection Using Federated Learning with Imbalanced Datasets [0.0]
This paper presents a weighted cross-entropy loss function approach to mitigate dataset imbalance.
A detailed performance evaluation study is then presented for the case of static analysis using the latest Windows-based ransomware families.
arXiv Detail & Related papers (2023-11-13T21:21:39Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Detecting Ransomware Execution in a Timely Manner [0.0]
In recent times ransomware has spread from traditional computational resources to cyber-physical systems and industrial controls.
We devised a series of experiments in which virtual instances are infected with ransomware.
We design a change point detection and learning method for identifying ransomware execution.
arXiv Detail & Related papers (2022-01-12T11:40:59Z) - Winning the Ransomware Lottery: A Game-Theoretic Model for Mitigating
Ransomware Attacks [0.0]
We construct an expected value model based on data from actual ransomware attacks.
We present mitigations to encourage an environment that is hostile to ransomware operators.
arXiv Detail & Related papers (2021-07-30T12:29:34Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - Detecting malicious PDF using CNN [46.86114958340962]
Malicious PDF files represent one of the biggest threats to computer security.
We propose a novel algorithm that uses an ensemble of Convolutional Neural Network (CNN) on the byte level of the file.
We show, using a data set of 90000 files downloadable online, that our approach maintains a high detection rate (94%) of PDF malware.
arXiv Detail & Related papers (2020-07-24T18:27:45Z) - Adversarial Attacks on Linear Contextual Bandits [87.08004581867537]
Malicious agents may have incentives to attack the bandit algorithm to induce it to perform a desired behavior.
We show that a malicious agent can force a linear contextual bandit algorithm to pull any desired arm $T - o(T)$ times over a horizon of $T$ steps.
We also investigate the case when a malicious agent is interested in affecting the behavior of the bandit algorithm in a single context.
arXiv Detail & Related papers (2020-02-10T15:04:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.