Minerva: A File-Based Ransomware Detector
- URL: http://arxiv.org/abs/2301.11050v2
- Date: Tue, 16 Apr 2024 10:31:27 GMT
- Title: Minerva: A File-Based Ransomware Detector
- Authors: Dorjan Hitaj, Giulio Pagnotta, Fabio De Gaspari, Lorenzo De Carli, Luigi V. Mancini,
- Abstract summary: This paper presents Minerva, a novel robust approach to ransomware detection.
Minerva is engineered to be robust by design against evasion attacks, with architectural and feature selection choices informed by their resilience to adversarial manipulation.
Our evaluation showcases the ability of Minerva to accurately identify ransomware, generalize to unseen threats, and withstand evasion attacks.
- Score: 2.139756658997758
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ransomware attacks have caused billions of dollars in damages in recent years, and are expected to cause billions more in the future. Consequently, significant effort has been devoted to ransomware detection and mitigation. Behavioral-based ransomware detection approaches have garnered considerable attention recently. These behavioral detectors typically rely on process-based behavioral profiles to identify malicious behaviors. However, with an increasing body of literature highlighting the vulnerability of such approaches to evasion attacks, a comprehensive solution to the ransomware problem remains elusive. This paper presents Minerva, a novel robust approach to ransomware detection. Minerva is engineered to be robust by design against evasion attacks, with architectural and feature selection choices informed by their resilience to adversarial manipulation. We conduct a comprehensive analysis of Minerva across a diverse spectrum of ransomware types, encompassing unseen ransomware as well as variants designed specifically to evade Minerva. Our evaluation showcases the ability of Minerva to accurately identify ransomware, generalize to unseen threats, and withstand evasion attacks. Furthermore, Minerva achieves remarkably low detection times, enabling the adoption of data loss prevention techniques with near-zero overhead.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Ransomware Detection Dynamics: Insights and Implications [0.0]
This research investigates the utilization of a feature selection algorithm for distinguishing ransomware-related and benign transactions in Bitcoin (BTC) and United States Dollar (USD)
We propose a set of novel features designed to capture the distinct characteristics of ransomware activity within the cryptocurrency ecosystem.
Through rigorous experimentation and evaluation, we demonstrate the effectiveness of our feature set in accurately extracting BTC and USD transactions.
arXiv Detail & Related papers (2024-02-07T05:36:06Z) - Ransomware Detection and Classification using Machine Learning [7.573297026523597]
This study uses the XGBoost and Random Forest (RF) algorithms to detect and classify ransomware attacks.
The models are evaluated on a dataset of ransomware attacks and demonstrate their effectiveness in accurately detecting and classifying ransomware.
arXiv Detail & Related papers (2023-11-05T18:16:53Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Ransomware Detection using Process Memory [0.0]
This study focuses on the inner workings and main function of ransomware.
New signatures and fingerprints of ransomware families can be identified to classify novel ransomware attacks correctly.
Several well-known machine learning algorithms were explored with an accuracy range of 81.38 to 96.28 percents.
arXiv Detail & Related papers (2022-03-31T08:03:48Z) - Detecting Ransomware Execution in a Timely Manner [0.0]
In recent times ransomware has spread from traditional computational resources to cyber-physical systems and industrial controls.
We devised a series of experiments in which virtual instances are infected with ransomware.
We design a change point detection and learning method for identifying ransomware execution.
arXiv Detail & Related papers (2022-01-12T11:40:59Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.