HEAD: A Bandwidth-Efficient Cooperative Perception Approach for Heterogeneous Connected and Autonomous Vehicles
- URL: http://arxiv.org/abs/2408.15428v1
- Date: Tue, 27 Aug 2024 22:05:44 GMT
- Title: HEAD: A Bandwidth-Efficient Cooperative Perception Approach for Heterogeneous Connected and Autonomous Vehicles
- Authors: Deyuan Qu, Qi Chen, Yongqi Zhu, Yihao Zhu, Sergei S. Avedisov, Song Fu, Qing Yang,
- Abstract summary: HEAD is a method that fuses features from the classification and regression heads in 3D object detection networks.
Our experiments demonstrate that HEAD is a fusion method that effectively balances communication bandwidth and perception performance.
- Score: 9.10239345027499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In cooperative perception studies, there is often a trade-off between communication bandwidth and perception performance. While current feature fusion solutions are known for their excellent object detection performance, transmitting the entire sets of intermediate feature maps requires substantial bandwidth. Furthermore, these fusion approaches are typically limited to vehicles that use identical detection models. Our goal is to develop a solution that supports cooperative perception across vehicles equipped with different modalities of sensors. This method aims to deliver improved perception performance compared to late fusion techniques, while achieving precision similar to the state-of-art intermediate fusion, but requires an order of magnitude less bandwidth. We propose HEAD, a method that fuses features from the classification and regression heads in 3D object detection networks. Our method is compatible with heterogeneous detection networks such as LiDAR PointPillars, SECOND, VoxelNet, and camera Bird's-eye View (BEV) Encoder. Given the naturally smaller feature size in the detection heads, we design a self-attention mechanism to fuse the classification head and a complementary feature fusion layer to fuse the regression head. Our experiments, comprehensively evaluated on the V2V4Real and OPV2V datasets, demonstrate that HEAD is a fusion method that effectively balances communication bandwidth and perception performance.
Related papers
- CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction [77.8576094863446]
We propose a new detextbfCoupled dutextbfAl-interactive lineatextbfR atttextbfEntion (CARE) mechanism.
We first propose an asymmetrical feature decoupling strategy that asymmetrically decouples the learning process for local inductive bias and long-range dependencies.
By adopting a decoupled learning way and fully exploiting complementarity across features, our method can achieve both high efficiency and accuracy.
arXiv Detail & Related papers (2024-11-25T07:56:13Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - MR3D-Net: Dynamic Multi-Resolution 3D Sparse Voxel Grid Fusion for LiDAR-Based Collective Perception [0.5714074111744111]
We propose MR3D-Net, a dynamic multi-resolution 3D sparse voxel grid fusion backbone architecture for LiDAR-based collective perception.
We show that sparse voxel grids at varying resolutions provide a meaningful and compact environment representation that can adapt to the communication bandwidth.
arXiv Detail & Related papers (2024-08-12T13:27:11Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
Cross-modality fusing information from different modalities effectively improves object detection performance.
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction.
Our proposed approach outperforms the state-of-the-art methods on $m$AP with 5.9% on $M3FD$ and 4.9% on FLIR-Aligned datasets.
arXiv Detail & Related papers (2024-04-14T05:28:46Z) - Cooperative Perception with Learning-Based V2V communications [11.772899644895281]
This work analyzes the performance of cooperative perception accounting for communications channel impairments.
A new late fusion scheme is proposed to leverage the robustness of intermediate features.
In order to compress the data size incurred by cooperation, a convolution neural network-based autoencoder is adopted.
arXiv Detail & Related papers (2023-11-17T05:41:23Z) - V2X-AHD:Vehicle-to-Everything Cooperation Perception via Asymmetric
Heterogenous Distillation Network [13.248981195106069]
We propose a multi-view vehicle-road cooperation perception system, vehicle-to-everything cooperative perception (V2X-AHD)
The V2X-AHD can effectively improve the accuracy of 3D object detection and reduce the number of network parameters, according to this study.
arXiv Detail & Related papers (2023-10-10T13:12:03Z) - Practical Collaborative Perception: A Framework for Asynchronous and
Multi-Agent 3D Object Detection [9.967263440745432]
Occlusion is a major challenge for LiDAR-based object detection methods.
State-of-the-art V2X methods resolve the performance-bandwidth tradeoff using a mid-collaboration approach.
We devise a simple yet effective collaboration method that achieves a better bandwidth-performance tradeoff than prior methods.
arXiv Detail & Related papers (2023-07-04T03:49:42Z) - Adaptive Feature Fusion for Cooperative Perception using LiDAR Point
Clouds [0.0]
Cooperative perception allows a Connected Autonomous Vehicle to interact with the other CAVs in the vicinity.
It can compensate for the limitations of the conventional vehicular perception such as blind spots, low resolution, and weather effects.
We evaluate the performance of cooperative perception for both vehicle and pedestrian detection using the CODD dataset.
arXiv Detail & Related papers (2022-07-30T01:53:05Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with
Transformers [49.689566246504356]
We propose TransFusion, a robust solution to LiDAR-camera fusion with a soft-association mechanism to handle inferior image conditions.
TransFusion achieves state-of-the-art performance on large-scale datasets.
We extend the proposed method to the 3D tracking task and achieve the 1st place in the leaderboard of nuScenes tracking.
arXiv Detail & Related papers (2022-03-22T07:15:13Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.