論文の概要: Continual-learning-based framework for structural damage recognition
- arxiv url: http://arxiv.org/abs/2408.15513v1
- Date: Wed, 28 Aug 2024 03:50:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 17:12:56.283920
- Title: Continual-learning-based framework for structural damage recognition
- Title(参考訳): 連続学習に基づく構造的損傷認識フレームワーク
- Authors: Jiangpeng Shu, Jiawei Zhang, Reachsak Ly, Fangzheng Lin, Yuanfeng Duan,
- Abstract要約: 鉄筋コンクリート構造物では多損傷が一般的であり、多数のニューラルネットワーク、パラメータ、データストレージが要求される。
本研究では,連続学習法を忘れずに学習を統合する連続学習に基づく損傷認識モデル(CLDRM)を提案する。
4つの認識タスクの3つの実験は、CLDRMフレームワークの有効性と有効性を検証するために設計された。
その結果,CLDRMフレームワークは適切な精度と有効性で損傷認識と分類に成功していることがわかった。
- 参考スコア(独自算出の注目度): 5.249291336933544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-damage is common in reinforced concrete structures and leads to the requirement of large number of neural networks, parameters and data storage, if convolutional neural network (CNN) is used for damage recognition. In addition, conventional CNN experiences catastrophic forgetting and training inefficiency as the number of tasks increases during continual learning, leading to large accuracy decrease of previous learned tasks. To address these problems, this study proposes a continuallearning-based damage recognition model (CLDRM) which integrates the learning without forgetting continual learning method into the ResNet-34 architecture for the recognition of damages in RC structures as well as relevant structural components. Three experiments for four recognition tasks were designed to validate the feasibility and effectiveness of the CLDRM framework. In this way, it reduces both the prediction time and data storage by about 75% in four tasks of continuous learning. Three experiments for four recognition tasks were designed to validate the feasibility and effectiveness of the CLDRM framework. By gradual feature fusion, CLDRM outperformed other methods by managed to achieve high accuracy in the damage recognition and classification. As the number of recognition tasks increased, CLDRM also experienced smaller decrease of the previous learned tasks. Results indicate that the CLDRM framework successfully performs damage recognition and classification with reasonable accuracy and effectiveness.
- Abstract(参考訳): 鉄筋コンクリート構造物では多損傷が一般的であり、畳み込みニューラルネットワーク(CNN)が損傷認識に使用される場合、多数のニューラルネットワーク、パラメータ、データストレージが要求される。
さらに,従来のCNNでは,連続学習中にタスク数が増加し,それまでの学習課題の精度が大幅に低下するなど,破滅的な忘れ込みやトレーニングの非効率を経験する。
これらの問題に対処するために,連続学習手法を忘れずに学習を統合した連続学習に基づく損傷認識モデル(CLDRM)をResNet-34アーキテクチャに提案する。
4つの認識タスクの3つの実験は、CLDRMフレームワークの有効性と有効性を検証するために設計された。
このようにして、継続的学習の4つのタスクにおいて、予測時間とデータストレージの両方を約75%削減する。
4つの認識タスクの3つの実験は、CLDRMフレームワークの有効性と有効性を検証するために設計された。
段階的な特徴融合により、CLDRMは他の手法よりも高い精度で損傷認識と分類を実現した。
認識タスクの数が増加するにつれて、CLDRMは以前の学習タスクよりも小さくなった。
その結果,CLDRMフレームワークは適切な精度と有効性で損傷認識と分類に成功していることがわかった。
関連論文リスト
- Re-TASK: Revisiting LLM Tasks from Capability, Skill, and Knowledge Perspectives [54.14429346914995]
CoT (Chain-of-Thought) は複雑な問題を解決する重要な方法となっている。
大規模言語モデル(LLM)はドメイン固有のタスクを正確に分解するのに苦労することが多い。
本稿では,LLMタスクを能力,スキル,知識の観点から再検討する理論モデルであるRe-TASKフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-08-13T13:58:23Z) - Towards Certified Unlearning for Deep Neural Networks [50.816473152067104]
認定されていない未学習は、凸機械学習モデルで広く研究されている。
認定アンラーニングとディープニューラルネットワーク(DNN)のギャップを埋める手法をいくつか提案する。
論文 参考訳(メタデータ) (2024-08-01T21:22:10Z) - A Scalable and Generalized Deep Learning Framework for Anomaly Detection in Surveillance Videos [0.47279903800557493]
ビデオにおける異常検出は、暴力、万引き、破壊など、複雑さ、騒音、多様な活動の性質のために困難である。
既存のアプローチでは、広範囲な再トレーニングなしに、さまざまな異常なタスクにディープラーニングモデルを適用するのに苦労しています。
本研究では,特徴一般化向上のための伝達学習,特徴表現向上のためのモデル融合,マルチタスク分類という,3つの重要なコンポーネントからなる新しいDLフレームワークを導入する。
RLVSデータセット(違反検出)では97.99%、UCFデータセットでは83.59%の精度を達成した。
論文 参考訳(メタデータ) (2024-07-17T22:41:12Z) - Mitigating the Impact of Labeling Errors on Training via Rockafellian Relaxation [0.8741284539870512]
ニューラルネットワークトレーニングのためのRockafellian Relaxation(RR)の実装を提案する。
RRは、分類タスク間で堅牢なパフォーマンスを達成するために、標準的なニューラルネットワーク手法を強化することができる。
RRはラベル付け誤りと/または逆方向の摂動の両方によるデータセットの破損の影響を軽減することができる。
論文 参考訳(メタデータ) (2024-05-30T23:13:01Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
距離学習パラダイムに該当する新しいレペラ・トラクタ損失を提案するが、ペアを生成する必要がなく、直接L2メトリックに最適化する。
CBIRタスクにおいて,畳み込みアーキテクチャと変圧器アーキテクチャの両方を用いて,少数ショットおよびフルセットトレーニングの文脈で提案した目的を評価する。
論文 参考訳(メタデータ) (2023-06-01T12:53:10Z) - A New Knowledge Distillation Network for Incremental Few-Shot Surface
Defect Detection [20.712532953953808]
本稿では,DKAN(Dual Knowledge Align Network)と呼ばれる新しい知識蒸留ネットワークを提案する。
提案したDKAN法は,事前学習型ファインタニング伝達学習パラダイムを踏襲し,ファインタニングのための知識蒸留フレームワークを設計した。
Few-shot NEU-DETデータセットをインクリメンタルに実験した結果、DKANは様々なシーンで他の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-09-01T15:08:44Z) - lpSpikeCon: Enabling Low-Precision Spiking Neural Network Processing for
Efficient Unsupervised Continual Learning on Autonomous Agents [14.916996986290902]
効率的な教師なし連続学習のための低精度SNN処理を可能にする新しい手法であるlpSpikeConを提案する。
我々のlpSpikeConは、教師なし連続学習によるオンライントレーニングを行うために、SNNモデルの重量記憶を8倍(すなわち、4ビットの重みを司法的に採用することで)削減することができる。
論文 参考訳(メタデータ) (2022-05-24T18:08:16Z) - Towards Balanced Learning for Instance Recognition [149.76724446376977]
本稿では,インスタンス認識のためのバランス学習のためのフレームワークであるLibra R-CNNを提案する。
IoUバランスのサンプリング、バランスの取れた特徴ピラミッド、客観的再重み付けをそれぞれ統合し、サンプル、特徴、客観的レベルの不均衡を低減します。
論文 参考訳(メタデータ) (2021-08-23T13:40:45Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
畳み込みニューラルネットワークの欠点は、敵の攻撃に弱いことである。
本稿では, 良好な精度を有する背骨CNNの対角的堅牢性を向上させることを目的とする。
最小限の計算オーバーヘッドの下では、拡張アーキテクチャはバックボーンCNNの標準的な性能と親和性が期待できる。
論文 参考訳(メタデータ) (2021-08-16T03:58:00Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning [3.8015092217142223]
モデルに依存しないメタラーニング(MAML)に基づく断層診断のための数発の学習フレームワークを提案する。
ケーススタディでは、提案したフレームワークは、シームズネットワークベースのベンチマーク研究よりも25%高い精度で全体の精度を達成している。
論文 参考訳(メタデータ) (2020-07-25T04:03:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。