A Novel Denoising Technique and Deep Learning Based Hybrid Wind Speed Forecasting Model for Variable Terrain Conditions
- URL: http://arxiv.org/abs/2408.15554v1
- Date: Wed, 28 Aug 2024 06:07:58 GMT
- Title: A Novel Denoising Technique and Deep Learning Based Hybrid Wind Speed Forecasting Model for Variable Terrain Conditions
- Authors: Sourav Malakar, Saptarsi Goswami, Amlan Chakrabarti, Bhaswati Ganguli,
- Abstract summary: This paper presents a novel and adaptive model for short-term forecasting of wind speed (WS)
It has achieved the lowest variance in terms of forecasting accuracy between simple and complex terrain conditions 0.70%.
- Score: 2.531156266686649
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wind flow can be highly unpredictable and can suffer substantial fluctuations in speed and direction due to the shape and height of hills, mountains, and valleys, making accurate wind speed (WS) forecasting essential in complex terrain. This paper presents a novel and adaptive model for short-term forecasting of WS. The paper's key contributions are as follows: (a) The Partial Auto Correlation Function (PACF) is utilised to minimise the dimension of the set of Intrinsic Mode Functions (IMF), hence reducing training time; (b) The sample entropy (SampEn) was used to calculate the complexity of the reduced set of IMFs. The proposed technique is adaptive since a specific Deep Learning (DL) model-feature combination was chosen based on complexity; (c) A novel bidirectional feature-LSTM framework for complicated IMFs has been suggested, resulting in improved forecasting accuracy; (d) The proposed model shows superior forecasting performance compared to the persistence, hybrid, Ensemble empirical mode decomposition (EEMD), and Variational Mode Decomposition (VMD)-based deep learning models. It has achieved the lowest variance in terms of forecasting accuracy between simple and complex terrain conditions 0.70%. Dimension reduction of IMF's and complexity-based model-feature selection helps reduce the training time by 68.77% and improve forecasting quality by 58.58% on average.
Related papers
- SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.
Three autoregressive models were compared: a convolutional autoencoder combined with a convolutional LSTM, a variational autoencoder (VAE) combined with a ConvLSTM and a hybrid model that combines proper decomposition (POD) with a LSTM (POD-DL)
While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others across both laminar and turbulent flow regimes.
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging [24.64264715041198]
We introduce Sparse Model Soups (SMS), a novel method for merging sparse models by initiating each prune-retrain cycle with the averaged model from the previous phase.
SMS preserves sparsity, exploits sparse network benefits, is modular and fully parallelizable, and substantially improves IMP's performance.
arXiv Detail & Related papers (2023-06-29T08:49:41Z) - Ensemble Modeling for Time Series Forecasting: an Adaptive Robust
Optimization Approach [3.7565501074323224]
This paper proposes a new methodology for building robust ensembles of time series forecasting models.
We demonstrate the effectiveness of our method through a series of synthetic experiments and real-world applications.
arXiv Detail & Related papers (2023-04-09T20:30:10Z) - Enhancing Deep Traffic Forecasting Models with Dynamic Regression [15.31488551912888]
This paper introduces a dynamic regression (DR) framework to enhance existing traffic forecasting models by structured learning for the residual process.
We evaluate the effectiveness of the proposed framework on deep traffic forecasting models using both speed and flow datasets.
arXiv Detail & Related papers (2023-01-17T01:12:44Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.