Ensemble Modeling for Time Series Forecasting: an Adaptive Robust
Optimization Approach
- URL: http://arxiv.org/abs/2304.04308v1
- Date: Sun, 9 Apr 2023 20:30:10 GMT
- Title: Ensemble Modeling for Time Series Forecasting: an Adaptive Robust
Optimization Approach
- Authors: Dimitris Bertsimas, Leonard Boussioux
- Abstract summary: This paper proposes a new methodology for building robust ensembles of time series forecasting models.
We demonstrate the effectiveness of our method through a series of synthetic experiments and real-world applications.
- Score: 3.7565501074323224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate time series forecasting is critical for a wide range of problems
with temporal data. Ensemble modeling is a well-established technique for
leveraging multiple predictive models to increase accuracy and robustness, as
the performance of a single predictor can be highly variable due to shifts in
the underlying data distribution. This paper proposes a new methodology for
building robust ensembles of time series forecasting models. Our approach
utilizes Adaptive Robust Optimization (ARO) to construct a linear regression
ensemble in which the models' weights can adapt over time. We demonstrate the
effectiveness of our method through a series of synthetic experiments and
real-world applications, including air pollution management, energy consumption
forecasting, and tropical cyclone intensity forecasting. Our results show that
our adaptive ensembles outperform the best ensemble member in hindsight by
16-26% in root mean square error and 14-28% in conditional value at risk and
improve over competitive ensemble techniques.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Attention-Based Ensemble Pooling for Time Series Forecasting [55.2480439325792]
We propose a method for pooling that performs a weighted average over candidate model forecasts.
We test this method on two time-series forecasting problems: multi-step forecasting of the dynamics of the non-stationary Lorenz 63 equation, and one-step forecasting of the weekly incident deaths due to COVID-19.
arXiv Detail & Related papers (2023-10-24T22:59:56Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
We investigate ensembling techniques in forecasting and examine their potential for use in nonseasonal time-series.
We propose using late data fusion, using a stacked ensemble of two forecasting models and two meta-features that prove their predictive power during a preliminary forecasting stage.
arXiv Detail & Related papers (2021-08-19T14:44:46Z) - Smoothed Bernstein Online Aggregation for Day-Ahead Electricity Demand
Forecasting [0.0]
We present a winning method of the IEEE DataPort Competition on Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm.
The day-ahead load forecasting approach is based on online forecast combination of multiple point prediction models.
The approach is flexible and can quickly adopt to new energy system situations as they occurred during and after COVID-19 shutdowns.
arXiv Detail & Related papers (2021-07-13T17:51:21Z) - Ensembles of Randomized NNs for Pattern-based Time Series Forecasting [0.0]
We propose an ensemble forecasting approach based on randomized neural networks.
A pattern-based representation of time series makes the proposed approach suitable for forecasting time series with multiple seasonality.
Case studies conducted on four real-world forecasting problems verified the effectiveness and superior performance of the proposed ensemble forecasting approach.
arXiv Detail & Related papers (2021-07-08T20:13:50Z) - An Extended Multi-Model Regression Approach for Compressive Strength
Prediction and Optimization of a Concrete Mixture [0.0]
A model based evaluation of concrete compressive strength is of high value, both for the purpose of strength prediction and the mixture optimization.
We take a further step towards improving the accuracy of the prediction model via the weighted combination of multiple regression methods.
A proposed (GA)-based mixture optimization is proposed, building on the obtained multi-regression model.
arXiv Detail & Related papers (2021-06-13T16:10:32Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.