QGAPHEnsemble : Combining Hybrid QLSTM Network Ensemble via Adaptive Weighting for Short Term Weather Forecasting
- URL: http://arxiv.org/abs/2501.10866v1
- Date: Sat, 18 Jan 2025 20:18:48 GMT
- Title: QGAPHEnsemble : Combining Hybrid QLSTM Network Ensemble via Adaptive Weighting for Short Term Weather Forecasting
- Authors: Anuvab Sen, Udayon Sen, Mayukhi Paul, Apurba Prasad Padhy, Sujith Sai, Aakash Mallik, Chhandak Mallick,
- Abstract summary: This research highlights the practical efficacy of employing advanced machine learning techniques.
Our model demonstrates a substantial improvement in the accuracy and reliability of meteorological predictions.
The paper highlights the importance of optimized ensemble techniques to improve the performance the given weather forecasting task.
- Score: 0.0
- License:
- Abstract: Accurate weather forecasting holds significant importance, serving as a crucial tool for decision-making in various industrial sectors. The limitations of statistical models, assuming independence among data points, highlight the need for advanced methodologies. The correlation between meteorological variables necessitate models capable of capturing complex dependencies. This research highlights the practical efficacy of employing advanced machine learning techniques proposing GenHybQLSTM and BO-QEnsemble architecture based on adaptive weight adjustment strategy. Through comprehensive hyper-parameter optimization using hybrid quantum genetic particle swarm optimisation algorithm and Bayesian Optimization, our model demonstrates a substantial improvement in the accuracy and reliability of meteorological predictions through the assessment of performance metrics such as MSE (Mean Squared Error) and MAPE (Mean Absolute Percentage Prediction Error). The paper highlights the importance of optimized ensemble techniques to improve the performance the given weather forecasting task.
Related papers
- A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.
We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - A Hybrid Sampling and Multi-Objective Optimization Approach for Enhanced Software Defect Prediction [3.407555189785573]
This paper introduces a novel SDP framework that integrates hybrid sampling techniques, with a suite of multi-objective optimization algorithms.
The proposed model applies feature fusion through multi-objective optimization, enhancing both the generalization capability and stability of the predictions.
Experiments conducted on datasets from NASA and PROMISE repositories demonstrate that the proposed hybrid sampling and multi-objective optimization approach improves data balance, eliminates redundant features, and enhances prediction accuracy.
arXiv Detail & Related papers (2024-10-13T23:39:04Z) - A Novel Denoising Technique and Deep Learning Based Hybrid Wind Speed Forecasting Model for Variable Terrain Conditions [2.531156266686649]
This paper presents a novel and adaptive model for short-term forecasting of wind speed (WS)
It has achieved the lowest variance in terms of forecasting accuracy between simple and complex terrain conditions 0.70%.
arXiv Detail & Related papers (2024-08-28T06:07:58Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - Ensemble Modeling for Time Series Forecasting: an Adaptive Robust
Optimization Approach [3.7565501074323224]
This paper proposes a new methodology for building robust ensembles of time series forecasting models.
We demonstrate the effectiveness of our method through a series of synthetic experiments and real-world applications.
arXiv Detail & Related papers (2023-04-09T20:30:10Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques [2.3436632098950456]
This paper presents a review of state-of-the-art forecasting methods for smart grid (SG) systems.
Traditional point forecasting methods including statistical, machine learning (ML), and deep learning (DL) are extensively investigated.
A comparative case study using the Victorian electricity consumption and American electric power (AEP) is conducted.
arXiv Detail & Related papers (2020-11-25T09:17:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.