論文の概要: Generalization Capabilities of Neural Cellular Automata for Medical Image Segmentation: A Robust and Lightweight Approach
- arxiv url: http://arxiv.org/abs/2408.15557v1
- Date: Wed, 28 Aug 2024 06:18:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 17:03:09.246168
- Title: Generalization Capabilities of Neural Cellular Automata for Medical Image Segmentation: A Robust and Lightweight Approach
- Title(参考訳): 医用画像分割のためのニューラルセルオートマタの一般化能力:ロバストで軽量なアプローチ
- Authors: Steven Korevaar, Ruwan Tennakoon, Alireza Bab-Hadiashar,
- Abstract要約: U-Netは、トレーニング分布から逸脱したデータでテストすると、パフォーマンスが大幅に低下する。
本稿では,従来のU-Netに比べて3桁の規模(すなわちx1000)のモデルを活用することの意味について検討する。
- 参考スコア(独自算出の注目度): 6.537479355990391
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the field of medical imaging, the U-Net architecture, along with its variants, has established itself as a cornerstone for image segmentation tasks, particularly due to its strong performance when trained on limited datasets. Despite its impressive performance on identically distributed (in-domain) data, U-Nets exhibit a significant decline in performance when tested on data that deviates from the training distribution, out-of-distribution (out-of-domain) data. Current methodologies predominantly address this issue by employing generalization techniques that hinge on various forms of regularization, which have demonstrated moderate success in specific scenarios. This paper, however, ventures into uncharted territory by investigating the implications of utilizing models that are smaller by three orders of magnitude (i.e., x1000) compared to a conventional U-Net. A reduction of this size in U-net parameters typically adversely affects both in-domain and out-of-domain performance, possibly due to a significantly reduced receptive field. To circumvent this issue, we explore the concept of Neural Cellular Automata (NCA), which, despite its simpler model structure, can attain larger receptive fields through recursive processes. Experimental results on two distinct datasets reveal that NCA outperforms traditional methods in terms of generalization, while still maintaining a commendable IID performance.
- Abstract(参考訳): 医用画像の分野では、U-Netアーキテクチャは変種とともに、画像分割タスクの基盤としての地位を確立している。
同一の分散(ドメイン内)データに対する印象的なパフォーマンスにもかかわらず、トレーニングディストリビューションから逸脱した(ドメイン外)データでテストすると、U-Netのパフォーマンスは大幅に低下する。
近年の手法では, 様々な形態の正規化に基づく一般化手法を用いてこの問題に対処し, 特定のシナリオにおいて適度な成功を収めている。
しかし,本論文では,従来のU-Netに比べて3桁(すなわちx1000)小さいモデルを用いて,非チャージ領域に進出する。
U-netパラメータのこのサイズの縮小は、一般的にドメイン内とドメイン外の両方のパフォーマンスに悪影響を及ぼす。
この問題を回避するために,より単純なモデル構造にもかかわらず,再帰的プロセスによってより大きな受容野を達成できるニューラルセルオートマタ(NCA)の概念を探索する。
2つの異なるデータセットによる実験結果から,NAAは一般化の観点からも従来の手法よりも優れており,評価可能なIID性能は維持されていることが明らかとなった。
関連論文リスト
- Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
抽出した特徴量の均等分布を保証するために正規化手法を導入する。
その明らかな単純さにもかかわらず、我々の手法は様々な細粒度視覚認識データセットに対して顕著な性能向上を示した。
論文 参考訳(メタデータ) (2024-09-03T07:32:46Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
論文 参考訳(メタデータ) (2024-03-27T02:24:00Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Test-time Training for Data-efficient UCDR [22.400837122986175]
ユニバーサルクロスドメイン検索プロトコルはこの分野のパイオニアである。
本研究では,一般化された検索問題をデータ効率で探索する。
論文 参考訳(メタデータ) (2022-08-19T07:50:04Z) - FV-UPatches: Enhancing Universality in Finger Vein Recognition [0.6299766708197883]
限られたデータで学習しながら一般化を実現するユニバーサルラーニングベースのフレームワークを提案する。
提案フレームワークは、他の静脈ベースの生体認証にも応用可能性を示す。
論文 参考訳(メタデータ) (2022-06-02T14:20:22Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Generalizable Person Re-Identification via Self-Supervised Batch Norm
Test-Time Adaption [63.7424680360004]
Batch Norm Test-time Adaption (BNTA)は、BNパラメータを適応的に更新するための自己教師型戦略を適用する、新しいre-idフレームワークである。
BNTAは、推論前にラベル付けされていないターゲットデータ内のドメイン認識情報を探索し、BNによって正規化された特徴分布を変調してターゲットドメインに適応させる。
論文 参考訳(メタデータ) (2022-03-01T18:46:32Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - SelfReg: Self-supervised Contrastive Regularization for Domain
Generalization [7.512471799525974]
対照的学習,自己教師付きコントラスト正規化(SelfReg)に基づく領域一般化のための新しい正規化手法を提案する。
提案手法は正のデータペアのみを用いるため,負のペアサンプリングによって生じる様々な問題を解消する。
最近のベンチマークであるDomainBedでは、提案手法は従来の最先端技術に匹敵する性能を示している。
論文 参考訳(メタデータ) (2021-04-20T09:08:29Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
マルチデータセット特徴一般化ネットワーク(MMFA-AAE)を提案する。
複数のラベル付きデータセットから普遍的なドメイン不変の特徴表現を学習し、それを見えないカメラシステムに一般化することができる。
また、最先端の教師付き手法や教師なしのドメイン適応手法を大きなマージンで超えている。
論文 参考訳(メタデータ) (2020-11-25T08:03:15Z) - Self-Challenging Improves Cross-Domain Generalization [81.99554996975372]
畳み込みニューラルネットワーク(CNN)は、ラベルと相関する支配的特徴を活性化することにより、画像分類を行う。
ドメイン外データに対するCNNの一般化を著しく改善する簡単なトレーニングである自己整合表現(RSC)を導入する。
RSCはトレーニングデータ上で活性化される主要な機能に対して反復的に挑戦し、ラベルと相関する残りの機能を有効にするようネットワークに強制する。
論文 参考訳(メタデータ) (2020-07-05T21:42:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。