Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2408.15580v1
- Date: Wed, 28 Aug 2024 07:05:46 GMT
- Title: Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection
- Authors: Jinglun Li, Xinyu Zhou, Pinxue Guo, Yixuan Sun, Yiwen Huang, Weifeng Ge, Wenqiang Zhang,
- Abstract summary: This paper proposes a novel hierarchical visual category modeling scheme to separate out-of-distribution data from in-distribution data.
We conduct experiments on seven popular benchmarks, including CIFAR, iNaturalist, SUN, Places, Textures, ImageNet-O, and OpenImage-O.
Our visual representation has a competitive performance when compared with features learned by classical methods.
- Score: 28.442470704073767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting out-of-distribution inputs for visual recognition models has become critical in safe deep learning. This paper proposes a novel hierarchical visual category modeling scheme to separate out-of-distribution data from in-distribution data through joint representation learning and statistical modeling. We learn a mixture of Gaussian models for each in-distribution category. There are many Gaussian mixture models to model different visual categories. With these Gaussian models, we design an in-distribution score function by aggregating multiple Mahalanobis-based metrics. We don't use any auxiliary outlier data as training samples, which may hurt the generalization ability of out-of-distribution detection algorithms. We split the ImageNet-1k dataset into ten folds randomly. We use one fold as the in-distribution dataset and the others as out-of-distribution datasets to evaluate the proposed method. We also conduct experiments on seven popular benchmarks, including CIFAR, iNaturalist, SUN, Places, Textures, ImageNet-O, and OpenImage-O. Extensive experiments indicate that the proposed method outperforms state-of-the-art algorithms clearly. Meanwhile, we find that our visual representation has a competitive performance when compared with features learned by classical methods. These results demonstrate that the proposed method hasn't weakened the discriminative ability of visual recognition models and keeps high efficiency in detecting out-of-distribution samples.
Related papers
- Masked Image Modeling: A Survey [73.21154550957898]
Masked image modeling emerged as a powerful self-supervised learning technique in computer vision.
We construct a taxonomy and review the most prominent papers in recent years.
We aggregate the performance results of various masked image modeling methods on the most popular datasets.
arXiv Detail & Related papers (2024-08-13T07:27:02Z) - Understanding normalization in contrastive representation learning and out-of-distribution detection [0.0]
We propose a simple method based on contrastive learning, which incorporates out-of-distribution data by discriminating against normal samples in the contrastive layer space.
Our approach can be applied flexibly as an outlier exposure (OE) approach, or as a fully self-supervised learning approach.
The high-quality features learned through contrastive learning consistently enhance performance in OE scenarios, even when the available out-of-distribution dataset is not diverse enough.
arXiv Detail & Related papers (2023-12-23T16:05:47Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Kernel Relative-prototype Spectral Filtering for Few-shot Learning [3.2091741098687696]
Few-shot learning performs classification tasks and regression tasks on scarce samples.
In this paper, we propose a framework of spectral filtering (shrinkage) for measuring the difference between query samples and prototypes.
arXiv Detail & Related papers (2022-07-24T07:53:27Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - IMACS: Image Model Attribution Comparison Summaries [16.80986701058596]
We introduce IMACS, a method that combines gradient-based model attributions with aggregation and visualization techniques.
IMACS extracts salient input features from an evaluation dataset, clusters them based on similarity, then visualizes differences in model attributions for similar input features.
We show how our technique can uncover behavioral differences caused by domain shift between two models trained on satellite images.
arXiv Detail & Related papers (2022-01-26T21:35:14Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Performance evaluation and application of computation based low-cost
homogeneous machine learning model algorithm for image classification [0.0]
Image classification machine learning model was trained with the intention to predict the category of the input image.
This paper evaluates the performance of a low-cost, simple algorithm that would integrate seamlessly into modern production-grade cloud-based applications.
arXiv Detail & Related papers (2020-10-16T01:05:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.