論文の概要: CSAD: Unsupervised Component Segmentation for Logical Anomaly Detection
- arxiv url: http://arxiv.org/abs/2408.15628v1
- Date: Wed, 28 Aug 2024 08:27:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:43:13.086427
- Title: CSAD: Unsupervised Component Segmentation for Logical Anomaly Detection
- Title(参考訳): CSAD: 論理異常検出のための教師なしコンポーネントセグメンテーション
- Authors: Yu-Hsuan Hsieh, Shang-Hong Lai,
- Abstract要約: 我々は,人間のラベル付けを伴わない軽量セグメンテーションネットワークのためのトレーニングラベルを生成する,教師なしコンポーネントセグメンテーション手法を開発した。
我々は,従来のSOTA法を超越したMVTec LOCO ADデータセットにおいて,95.3%のAUROC検出を実現する。
- 参考スコア(独自算出の注目度): 10.716585855033347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To improve logical anomaly detection, some previous works have integrated segmentation techniques with conventional anomaly detection methods. Although these methods are effective, they frequently lead to unsatisfactory segmentation results and require manual annotations. To address these drawbacks, we develop an unsupervised component segmentation technique that leverages foundation models to autonomously generate training labels for a lightweight segmentation network without human labeling. Integrating this new segmentation technique with our proposed Patch Histogram module and the Local-Global Student-Teacher (LGST) module, we achieve a detection AUROC of 95.3% in the MVTec LOCO AD dataset, which surpasses previous SOTA methods. Furthermore, our proposed method provides lower latency and higher throughput than most existing approaches.
- Abstract(参考訳): 論理的異常検出を改善するために,従来の異常検出手法とセグメンテーション技術を統合した先行研究がある。
これらの手法は有効であるが、しばしば不満足なセグメンテーション結果をもたらし、手動のアノテーションを必要とする。
これらの欠点に対処するために、基礎モデルを利用した教師なしコンポーネントセグメンテーション手法を開発し、人間のラベルを使わずに軽量セグメンテーションネットワークのためのトレーニングラベルを自律的に生成する。
今回提案したPatch HistogramモジュールとLGSTモジュールを統合し,従来のSOTA法を超越したMVTec LOCO ADデータセットで95.3%のAUROCを検出する。
さらに,提案手法は既存の手法よりもレイテンシが低く,スループットも高い。
関連論文リスト
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
オープンセットのシナリオでは、ラベルなしデータセットには、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方が含まれている。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
我々は、CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれるシンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-11-20T02:57:35Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - LiSD: An Efficient Multi-Task Learning Framework for LiDAR Segmentation and Detection [6.813145466843275]
LiSDはボクセルベースのエンコーダデコーダフレームワークで、セグメンテーションと検出の両方のタスクに対処する。
これは、ライダーのみの手法のnuScenesセグメンテーションベンチマークにおいて、83.3% mIoUの最先端性能を達成する。
論文 参考訳(メタデータ) (2024-06-11T07:26:54Z) - Enhancing Weakly Supervised Semantic Segmentation with Multi-modal Foundation Models: An End-to-End Approach [7.012760526318993]
Weakly-Supervised Semantic (WSSS)は、広範囲なラベリングに対してコスト効率のよい回避手段を提供する。
既存のWSSSメソッドは、セグメンテーション結果の低さにつながるオブジェクトの境界を理解するのに苦労しています。
本稿では,境界ボックス内の視覚的基盤モデルを活用することにより,これらの問題に対処する,新しい効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-10T16:42:25Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free Object Detection (SFOD) は、ラベル付きソースデータにアクセスすることなく、未ラベルのターゲットドメインにソーストレーニングされた検出器を適応することを目的としている。
現在のSFOD法は適応相におけるしきい値に基づく擬似ラベル手法を用いる。
疑似ラベルを最大限に活用するために,高信頼度と低信頼度しきい値を導入する手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T12:59:55Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Weakly Supervised Semantic Segmentation via Progressive Patch Learning [39.87150496277798]
分類の局所的詳細抽出を改善するために「プログレッシブ・パッチ・ラーニング」アプローチを提案する。
は、機能マップをパッチに分解し、最終的なアグリゲーションの前に各ローカルパッチを独立して処理する。
プログレッシブ・パッチ・ラーニング(Progressive Patch Learning)は、特徴の破壊とパッチ・ラーニングをさらにプログレッシブな方法で多段階の粒度に拡張する。
論文 参考訳(メタデータ) (2022-09-16T09:54:17Z) - Dense Learning based Semi-Supervised Object Detection [46.885301243656045]
半教師付きオブジェクト検出(SSOD)は、大量のラベルのないデータの助けを借りて、オブジェクト検出器の訓練と展開を容易にすることを目的としている。
本稿では,DenSe Learningに基づくアンカーフリーSSODアルゴリズムを提案する。
実験はMS-COCOとPASCAL-VOCで行われ,提案手法は新たな最先端SSOD性能を記録する。
論文 参考訳(メタデータ) (2022-04-15T02:31:02Z) - Flip Learning: Erase to Segment [65.84901344260277]
弱い教師付きセグメンテーション(WSS)は、時間と面倒な手作業のアノテーションを減らすのに役立ちます。
ボックスアノテーションのみを必要とするFlip Learningという,斬新で汎用的なWSSフレームワークを提案する。
提案手法は,完全教師付き学習と弱教師付き学習のギャップを狭める大きな可能性を示す。
論文 参考訳(メタデータ) (2021-08-02T09:56:10Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
セマンティックセグメンテーションのためのシンプルで効果的な半教師付き学習フレームワークを提案する。
単純な設計とトレーニングのテクニックのセットは、半教師付きセマンティックセグメンテーションの性能を大幅に向上させることができる。
本手法は,Cityscapes と Pascal VOC データセットの半教師付き設定において,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2021-04-15T06:01:39Z) - Track, Check, Repeat: An EM Approach to Unsupervised Tracking [20.19397660306534]
本研究では, 移動物体を3Dで検出・追跡する非監視手法を, RGB-D動画で提案する。
重度データ拡張により,外観に基づく2次元および3次元検出器のアンサンブルを学習する。
CATERとKITTIの挑戦的なビデオを使用して、既存の監視されていないオブジェクト発見と追跡方法と比較します。
論文 参考訳(メタデータ) (2021-04-07T22:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。