Leveraging Persistent Homology for Differential Diagnosis of Mild Cognitive Impairment
- URL: http://arxiv.org/abs/2408.15647v1
- Date: Wed, 28 Aug 2024 09:01:55 GMT
- Title: Leveraging Persistent Homology for Differential Diagnosis of Mild Cognitive Impairment
- Authors: Ninad Aithal, Debanjali Bhattacharya, Neelam Sinha, Thomas Gregor Issac,
- Abstract summary: Mild cognitive impairment (MCI) is characterized by subtle changes in cognitive functions, often associated with disruptions in brain connectivity.
The present study introduces a novel fine-grained analysis to examine topological alterations in neurodegeneration pertaining to six different brain networks of subjects.
- Score: 2.474908349649168
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mild cognitive impairment (MCI) is characterized by subtle changes in cognitive functions, often associated with disruptions in brain connectivity. The present study introduces a novel fine-grained analysis to examine topological alterations in neurodegeneration pertaining to six different brain networks of MCI subjects (Early/Late MCI). To achieve this, fMRI time series from two distinct populations are investigated: (i) the publicly accessible ADNI dataset and (ii) our in-house dataset. The study utilizes sliding window embedding to convert each fMRI time series into a sequence of 3-dimensional vectors, facilitating the assessment of changes in regional brain topology. Distinct persistence diagrams are computed for Betti descriptors of dimension-0, 1, and 2. Wasserstein distance metric is used to quantify differences in topological characteristics. We have examined both (i) ROI-specific inter-subject interactions and (ii) subject-specific inter-ROI interactions. Further, a new deep learning model is proposed for classification, achieving a maximum classification accuracy of 95% for the ADNI dataset and 85% for the in-house dataset. This methodology is further adapted for the differential diagnosis of MCI sub-types, resulting in a peak accuracy of 76.5%, 91.1% and 80% in classifying HC Vs. EMCI, HC Vs. LMCI and EMCI Vs. LMCI, respectively. We showed that the proposed approach surpasses current state-of-the-art techniques designed for classifying MCI and its sub-types using fMRI.
Related papers
- Persistent Homology for MCI Classification: A Comparative Analysis between Graph and Vietoris-Rips Filtrations [2.306862732864727]
The present study offers a detailed analysis of topological changes associated with Mild cognitive impairment (MCI)
This analysis utilizes fMRI time series data from two distinct populations: the publicly available ADNI dataset and the in-house TLSA dataset.
For Vietoris-Rips filtration, inter-ROI MCI Wasserstein distance matrices between persistent diagrams are used for classification, while graph filtration relies on the top ten most persistent homology features.
arXiv Detail & Related papers (2024-10-30T04:24:40Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Multi-scale fMRI time series analysis for understanding
neurodegeneration in MCI [2.474908349649168]
We present a technique that spans multi-scale views, examining each individual ROI that constitutes the network.
Deep learning based classification is utilized in understanding neurodegeneration.
arXiv Detail & Related papers (2024-02-05T08:41:39Z) - HA-HI: Synergising fMRI and DTI through Hierarchical Alignments and
Hierarchical Interactions for Mild Cognitive Impairment Diagnosis [10.028997265879598]
We introduce a novel Hierarchical Alignments and Hierarchical Interactions (HA-HI) method for diagnosis of mild cognitive impairment (MCI) and subjective cognitive decline (SCD)
HA-HI efficiently learns significant MCI- or SCD- related regional and connectivity features by aligning various feature types and hierarchically maximizing their interactions.
To enhance the interpretability of our approach, we have developed the Synergistic Activation Map (SAM) technique, revealing the critical brain regions and connections that are indicative of MCI/SCD.
arXiv Detail & Related papers (2024-01-02T12:46:02Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - Deep Joint Learning of Pathological Region Localization and Alzheimer's
Disease Diagnosis [4.5484714814315685]
BrainBagNet is a framework for jointly learning pathological region localization and Alzheimer's disease diagnosis.
The proposed method represents the patch-level response from whole-brain MRI scans and discriminative brain-region from position information.
In five-fold cross-validation, the classification performance of the proposed method outperformed that of the state-of-the-art methods in both AD diagnosis and mild cognitive impairment prediction tasks.
arXiv Detail & Related papers (2021-08-10T10:06:54Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.