An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease
- URL: http://arxiv.org/abs/2406.13292v3
- Date: Tue, 04 Feb 2025 15:36:37 GMT
- Title: An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease
- Authors: Giorgio Dolci, Federica Cruciani, Md Abdur Rahaman, Anees Abrol, Jiayu Chen, Zening Fu, Ilaria Boscolo Galazzo, Gloria Menegaz, Vince D. Calhoun,
- Abstract summary: Alzheimer's disease (AD) is the most prevalent form of dementia worldwide, encompassing a prodromal stage known as Mild Cognitive Impairment (MCI)
The objective of the work was to capture structural and functional modulations of brain structure and function relying on multimodal MRI data and Single Nucleotide Polymorphisms.
- Score: 13.213387075528017
- License:
- Abstract: \textbf{Objective:} Alzheimer's disease (AD) is the most prevalent form of dementia worldwide, encompassing a prodromal stage known as Mild Cognitive Impairment (MCI), where patients may either progress to AD or remain stable. The objective of the work was to capture structural and functional modulations of brain structure and function relying on multimodal MRI data and Single Nucleotide Polymorphisms, also in case of missing views, with the twofold goal of classifying AD patients versus healthy controls and detecting MCI converters. % in two distinct tasks, dealing with also missing data.\\ \textbf{Approach:} We propose a multimodal DL-based classification framework where a generative module employing Cycle Generative Adversarial Networks was introduced in the latent space for imputing missing data (a common issue of multimodal approaches). Explainable AI method was then used to extract input features' relevance allowing for post-hoc validation and enhancing the interpretability of the learned representations. \textbf{Main results:} Experimental results on two tasks, AD detection and MCI conversion, showed that our framework reached competitive performance in the state-of-the-art with an accuracy of $0.926\pm0.02$ and $0.711\pm0.01$ in the two tasks, respectively. The interpretability analysis revealed gray matter modulations in cortical and subcortical brain areas typically associated with AD. Moreover, impairments in sensory-motor and visual resting state networks along the disease continuum, as well as genetic mutations defining biological processes linked to endocytosis, amyloid-beta, and cholesterol, were identified. \textbf{Significance:} Our integrative and interpretable DL approach shows promising performance for AD detection and MCI prediction while shedding light on important biological insights.
Related papers
- ADAM-1: AI and Bioinformatics for Alzheimer's Detection and Microbiome-Clinical Data Integrations [4.426051635422496]
The Alzheimer's Disease Analysis Model Generation 1 (ADAM) is a multi-agent large language model (LLM) framework designed to integrate and analyze multi-modal data.
ADAM-1 synthesizes insights from diverse data sources and contextualizes findings using literature-driven evidence.
arXiv Detail & Related papers (2025-01-14T18:56:33Z) - Multimodal Outer Arithmetic Block Dual Fusion of Whole Slide Images and Omics Data for Precision Oncology [6.418265127069878]
We propose the use of omic embeddings during early and late fusion to capture complementary information from local (patch-level) to global (slide-level) interactions.
This dual fusion strategy enhances interpretability and classification performance, highlighting its potential for clinical diagnostics.
arXiv Detail & Related papers (2024-11-26T13:25:53Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance.
Due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas.
We propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM)
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z) - Multimodal Representations Learning and Adversarial Hypergraph Fusion
for Early Alzheimer's Disease Prediction [30.99183477161096]
We propose a novel representation learning and adversarial hypergraph fusion framework for Alzheimer's disease diagnosis.
Our model achieves superior performance on Alzheimer's disease detection compared with other related models.
arXiv Detail & Related papers (2021-07-21T08:08:05Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Interpretable multimodal fusion networks reveal mechanisms of brain
cognition [26.954460880062506]
We develop an interpretable multimodal fusion model, gCAM-CCL, which can perform automated diagnosis and result interpretation simultaneously.
We validate the gCAM-CCL model on a brain imaging-genetic study, and show gCAM-CCL's performed well for both classification and mechanism analysis.
arXiv Detail & Related papers (2020-06-16T18:52:50Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.